Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 13(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38611457

ABSTRACT

Rice blast disease, caused by the fungus Magnaporthe oryzae, is a significant threat to rice production. Resistant cultivars can effectively resist the invasion of M. oryzae. Thus, the identification of disease-resistant genes is of utmost importance for improving rice production. Autophagy, a cellular process that recycles damaged components, plays a vital role in plant growth, development, senescence, stress response, and immunity. To understand the involvement of autophagy-related genes (ATGs) in rice immune response against M. oryzae, we conducted a comprehensive analysis of 37 OsATGs, including bioinformatic analysis, transcriptome analysis, disease resistance analysis, and protein interaction analysis. Bioinformatic analysis revealed that the promoter regions of 33 OsATGs contained cis-acting elements responsive to salicylic acid (SA) or jasmonic acid (JA), two key hormones involved in plant defense responses. Transcriptome data showed that 21 OsATGs were upregulated during M. oryzae infection. Loss-of-function experiments demonstrated that OsATG6c, OsATG8a, OsATG9b, and OsATG13a contribute to rice blast resistance. Additionally, through protein interaction analysis, we identified five proteins that may interact with OsATG13a and potentially contribute to plant immunity. Our study highlights the important role of autophagy in rice immunity and suggests that OsATGs may enhance resistance to rice blast fungus through the involvement of SA, JA, or immune-related proteins. These findings provide valuable insights for future efforts in improving rice production through the identification and utilization of autophagy-related genes.

2.
Plants (Basel) ; 12(11)2023 May 26.
Article in English | MEDLINE | ID: mdl-37299101

ABSTRACT

The family of phosphatidylinositol transfer proteins (PITPs) is able to bind specific lipids to carry out various biological functions throughout different stages of plant life. But the function of PITPs in rice plant is unclear. In this study, 30 PITPs were identified from rice genome, which showed differences in physicochemical properties, gene structure, conservation domains, and subcellular localization. The promoter region of the OsPITPs genes included at least one type of hormone response element, such as methyl jasmonate (Me JA) and salicylic acid (SA). Furthermore, the expression level of OsML-1, OsSEC14-3, OsSEC14-4, OsSEC14-15, and OsSEC14-19 genes were significantly affected by infection of rice blast fungus Magnaporthe oryzae. Based on these findings, it is possible that OsPITPs may be involved in rice innate immunity in response to M. oryzae infection through the Me JA and SA pathway.

3.
Mol Plant Pathol ; 23(8): 1200-1213, 2022 08.
Article in English | MEDLINE | ID: mdl-35430769

ABSTRACT

The initial stage of rice blast fungus, Magnaporthe oryzae, infection, before 36 h postinoculation, is a critical timespan for deploying pathogen effectors to overcome the host's defences and ultimately cause the disease. However, how this process is regulated at the transcription level remains largely unknown. This study functionally characterized two M. oryzae Early Infection-induced Transcription Factor genes (MOEITF1 and MOEITF2) and analysed their roles in this process. Target gene deletion and mutant phenotype analysis showed that the mutants Δmoeitf1 and Δmoeitf2 were only defective for infection growth but not for vegetative growth, asexual/sexual sporulation, conidial germination, and appressoria formation. Gene expression analysis of 30 putative effectors revealed that most effector genes were down-regulated in mutants, implying a potential regulation by the transcription factors. Artificial overexpression of two severely down-regulated effectors, T1REP and T2REP, in the mutants partially restored the pathogenicity of Δmoeitf1 and Δmoeitf2, respectively, indicating that these are directly regulated. Yeast one-hybrid assay and electrophoretic mobility shift assay indicated that Moeitf1 specifically bound the T1REP promoter and Moeitf2 specifically bound the T2REP promoter. Both T1REP and T2REP were predicted to be secreted during infection, and the mutants of T2REP were severely reduced in pathogenicity. Our results indicate crucial roles for the fungal-specific Moeitf1 and Moeitf2 transcription factors in regulating an essential step in M. oryzae early establishment after penetrating rice epidermal cells, highlighting these as possible targets for disease control.


Subject(s)
Magnaporthe , Oryza , Ascomycota , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Oryza/microbiology , Plant Diseases/microbiology , Spores, Fungal/physiology , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...