Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 13(36): 42598-42604, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34469121

ABSTRACT

The development of heteroatom-doped carbons with fascinating hierarchical porosity is of great significance for the improvement of catalytic properties of carbon catalysts. In this work, we report a boron and nitrogen codoped hollow mesoporous carbon (denoted as BN/HMC) via a simple synthesis route by direct pyrolysis of phenylboronic acid/melamine/ZIF-8 precursors. Thanks to their high specific surface area, unique hollow mesoporous nanoarchitecture, rich defects, and boron and nitrogen codoping, the obtained BN/HMC-0.05 can be employed as a high-efficiency carbon-based catalyst for the reduction of 4-nitrophenol. Theoretical calculations reveal that the B and N codoping in a carbon matrix are essential for the adsorption and activation of 4-nitrophenol. The present work might pave a new way in construction of metal-free carbon catalysts with both heteroatom doping and hierarchical porosity for various applications.

2.
ACS Appl Mater Interfaces ; 11(29): 25976-25985, 2019 Jul 24.
Article in English | MEDLINE | ID: mdl-31245986

ABSTRACT

In order to improve the catalytic performance of oxygen reduction reaction (ORR), it is pivotal to increase the density and accessibility of the active sites. Herein, we have developed a template-free melamine-assisted cocalcined strategy to afford Fe-embedded and N-doped carbons (Fe-N-C) with not only high density of atomically dispersed Fe-Nx active sites but also abundant three-dimensional interconnected mesopores by directly pyrolyzing Fe-ZIF-8 covered with a controllable melamine layer. It is demonstrated that the introduction of melamine in the precursor plays a key role in constructing various carbonized products with controllable morphology, porosity, and components. With an optimal mass ratio 1:1 of melamine to Fe-ZIF-8, the resultant Fe@MNC-1 exhibits excellent ORR activity and stability, which exceeds 20 wt % commercial Pt/C catalyst (with a half-wave potential of 0.88 V vs 0.85 V) in an alkaline electrolyte and is even comparable to the commercial Pt/C catalyst (with a half-wave potential of 0.78 V vs 0.80 V) in an acidic electrolyte. To the best of our knowledge, Fe@MNC-1 can be ranked among the best nonprecious metal electrocatalysts for ORR in both alkaline and acidic media. The present synthetic strategy may provide a new opportunity for the design and construction of metal-organic framework-derived nanomaterials with rational composition and a desired porous structure to boost their electrocatalytic performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...