Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
J Mol Med (Berl) ; 102(5): 693-707, 2024 05.
Article in English | MEDLINE | ID: mdl-38492027

ABSTRACT

Physical therapy is extensively employed in clinical settings. Nevertheless, the absence of suitable animal models has resulted in an incomplete understanding of the in vivo mechanisms and cellular distribution that respond to physical stimuli. The objective of this research was to create a mouse model capable of indicating the cells affected by physical stimuli. In this study, we successfully established a mouse line based on the heat shock protein 70 (Hsp70) promoter, wherein the expression of CreERT2 can be induced by physical stimuli. Following stimulation of the mouse tail, ear, or cultured calvarias with heat shock (generated by heating, ultrasound, or laser), a distinct Cre-mediated excision was observed in cells stimulated by these physical factors with minimal occurrence of leaky reporter expression. The application of heat shock to Hsp70-CreERT2; FGFR2-P253R double transgenic mice or Hsp70-CreERT2 mice infected with AAV-BMP4 at calvarias induced the activation of Cre-dependent mutant FGFR2-P253R or BMP4 respectively, thereby facilitating the premature closure of cranial sutures or the repair of calvarial defects. This novel mouse line holds significant potential for investigating the underlying mechanisms of physical therapy, tissue repair and regeneration, lineage tracing, and targeted modulation of gene expression of cells in local tissue stimulated by physical factor at the interested time points. KEY MESSAGES: In the study, an Hsp70-CreERT2 transgenic mouse was generated for heat shock-induced gene modulation. Heat shock, ultrasound, and laser stimulation effectively activated Cre expression in Hsp70-CreERT2; reporter mice, which leads to deletion of floxed DNA sequence in the tail, ear, and cultured calvaria tissues of mice. Local laser stimuli on cultured calvarias effectively induce Fgfr2-P253R expression in Hsp70-mTmG-Fgfr2-P253R mice and result in accelerated premature closure of cranial suture. Heat shock activated AAV9-FLEX-BMP4 expression and subsequently promoted the repair of calvarial defect of Hsp70-CreERT2; Rosa26-mTmG mice.


Subject(s)
Bone Morphogenetic Protein 4 , HSP70 Heat-Shock Proteins , Mice, Transgenic , Promoter Regions, Genetic , Animals , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Mice , Bone Morphogenetic Protein 4/metabolism , Bone Morphogenetic Protein 4/genetics , Heat-Shock Response/genetics , Skull/metabolism , Gene Expression Regulation , Integrases/metabolism , Integrases/genetics
2.
Osteoporos Int ; 35(6): 1007-1017, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38430243

ABSTRACT

The study, using data from Chongqing, China, and employing Mendelian randomization along with bioinformatics, establishes a causal link between asthma and osteoporosis, beyond glucocorticoid effects. Asthma may contribute to osteoporosis by accelerating bone turnover through inflammatory factors, disrupting the coupling between osteoblasts and osteoclasts, ultimately leading to osteoporosis. INTRODUCTION: Asthma and osteoporosis are prevalent health conditions with substantial public health implications. However, their potential interplay and the underlying mechanisms have not been fully elucidated. Previous research has primarily focused on the impact of glucocorticoids on osteoporosis, often overlooking the role of asthma itself. METHODS: We conducted a multi-stage stratified random sampling in Chongqing, China and excluded individuals with a history of glucocorticoid use. Participants underwent comprehensive health examinations, and their clinical data, including asthma status, were recorded. Logistic regression and Mendelian randomization were employed to investigate the causal link between asthma and osteoporosis. Furthermore, bioinformatics analyses and serum biomarker assessments were conducted to explore potential mechanistic pathways. RESULTS: We found a significant association between asthma and osteoporosis, suggesting a potential causal link. Mendelian Randomization analysis provided further support for this causal link. Bioinformatics analyses revealed that several molecular pathways might mediate the impact of asthma on bone health. Serum alkaline phosphatase levels were significantly elevated in the asthma group, suggesting potential involvement in bone turnover. CONCLUSION: Our study confirms a causal link between asthma and osteoporosis and highlights the importance of considering asthma in osteoporosis prediction models. It also suggests that asthma may accelerate osteoporosis by increasing bone turnover through inflammatory factors, disrupting the coupling between osteoblasts and osteoclasts, ultimately leading to bone loss.


Subject(s)
Asthma , Computational Biology , Mendelian Randomization Analysis , Osteoporosis , Humans , Mendelian Randomization Analysis/methods , Asthma/genetics , Asthma/physiopathology , Asthma/epidemiology , Osteoporosis/genetics , Osteoporosis/etiology , Osteoporosis/epidemiology , Osteoporosis/physiopathology , Female , Middle Aged , Computational Biology/methods , Male , Cross-Sectional Studies , Aged , Bone Remodeling/physiology , Bone Remodeling/genetics , Adult , Biomarkers/blood , Polymorphism, Single Nucleotide , China/epidemiology , Genetic Predisposition to Disease , Osteoclasts , Bone Density/genetics , Bone Density/physiology
3.
J Adv Res ; 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38219870

ABSTRACT

INTRODUCTION: Osteoarthritis (OA) is a degenerative bone disease associated with ageing, characterized by joint pain, stiffness, swelling and deformation. Currently, pharmaceutical options for the clinical treatment of OA are very limited. Circular RNAs(cirRNAs) have garnered significant attention in OA and related drug development due to their unique RNA sequence characteristics.Therefore,exploring the role of cirRNAs in the occurrence and development of OA is of paramount importance for the development of effective medications for OA. OBJECTIVES: To identify a novel circRNA, circUbqln1, for treating osteoarthritis and elucidate its pathophysiological role and mechanisms in the treatment of OA. METHODS: The circUbqln1 expression and distribution were determined by qRT-PCR and FISH. XBP1 gene knockout(XBP1 cKO) spontaneous OA and DMM model and WT mouse CIOA model were used to explore the role of XBP1 and circUbqln1 in OA.Overexpression or knockdown of circUbqln1 lentivirus was used to observe the impacts of circUbqln1 on primary chondrocytes,C28/I2 and mice in vitro and in vivo.Chromatin immunoprecipitation,luciferase reporter assay,RNA pulldown,mass spectrometry,RNA immunoprecipitation,fluorescence in situ hybridization,and flow cytometry to explore the molecular mechanisms of circUbqln1. RESULTS: It was found that cartilage-specific XBP1 cKO mice exhibited a faster OA progression compared to normal's.Importantly,transcript factor XBP1s has the capacity to impede the biogenesis of circUbqln1,derived from Ubqln1. The circUbqln1 promotes cartilage catabolism and inhibits anabolism, therefore accelerates the occurrence of OA.Mechanismly,circUbqln1 can translocate to the chondrocyte nucleus with the assistance of phosphorylated 14-3-3ζ, upregulate the transcriptional activity of the proline dehydrogenase(Prodh) promoter and PRODH enzyme activity. Consequently, this leads to the promotion of proline degradation and the inhibition of collagen synthesis,ultimately culminating in the impairment of cartilage and its structural integrity. CONCLUSION: CircUbqln1 plays a crucial role in the occurrence and development of OA, indicating that the inhibition of circUbqln1 holds promise as a significant approach for treating OA in the future.

4.
Chin J Traumatol ; 27(3): 168-172, 2024 May.
Article in English | MEDLINE | ID: mdl-38262890

ABSTRACT

PURPOSE: To identify the risk factors for training-related lower extremity muscle injuries in young males by a non-invasive method of body composition analysis. METHODS: A total of 282 healthy young male volunteers aged 18 - 20 years participated in this cohort study. Injury location, degree, and injury rate were adjusted by a questionnaire based on the overuse injury assessment methods used in epidemiological studies of sports injuries. The occurrence of training injuries is monitored and diagnosed by physicians and treated accordingly. The body composition was measured using the BodyStat QuadScan 4000 multifrequency Bio-impedance system at 5, 50, 100 and 200 kHz to obtain 4 impedance values. The Shapiro-Wilk test was used to check whether the data conformed to a normal distribution. Data of normal distribution were shown as mean ± SD and analyzed by t-test, while those of non-normal distribution were shown as median (Q1, Q3) and analyzed by Wilcoxon rank sum test. The receiver operator characteristic curve and logistic regression analysis were performed to investigate risk factors for developing training-related lower extremity injuries and accuracy. RESULTS: Among the 282 subjects, 78 (27.7%) developed training injuries. Lower extremity training injuries revealed the highest incidence, accounting for 23.4% (66 cases). These patients showed higher percentages of lean body mass (p = 0.001), total body water (TBW, p = 0.006), extracellular water (p = 0.020) and intracellular water (p = 0.010) as well as a larger ratio of basal metabolic rate/total weight (p = 0.006), compared with those without lower extremity muscle injuries. On the contrary, the percentage of body fat (p = 0.001) and body fat mass index (p = 0.002) were lower. Logistic regression analysis showed that TBW percentage > 65.35% (p = 0.050, odds ratio = 3.114) and 3rd space water > 0.95% (p = 0.045, odds ratio = 2.342) were independent risk factors for lower extremity muscle injuries. CONCLUSION: TBW percentage and 3rd space water measured with bio-impedance method are potential risk factors for predicting the incidence of lower extremity muscle injuries in young males following training.


Subject(s)
Body Water , Lower Extremity , Muscle, Skeletal , Humans , Male , Risk Factors , Young Adult , Adolescent , Lower Extremity/injuries , Muscle, Skeletal/injuries , Athletic Injuries/epidemiology , Body Composition , Cohort Studies
5.
Theranostics ; 14(1): 265-282, 2024.
Article in English | MEDLINE | ID: mdl-38164153

ABSTRACT

Lymphatic vessel networks are a main part of the vertebrate cardiovascular system, which participate in various physiological and pathological processes via regulation of fluid transport and immunosurveillance. Targeting lymphatic vessels has become a potent strategy for treating various human diseases. The presence of varying degrees of inflammation in joints of rheumatoid arthritis (RA) and osteoarthritis (OA), characterized by heightened infiltration of inflammatory cells, increased levels of inflammatory factors, and activation of inflammatory signaling pathways, significantly contributes to the disruption of cartilage and bone homeostasis in arthritic conditions. Increasing evidence has demonstrated the pivotal role of lymphatic vessels in maintaining joint homeostasis, with their pathological alterations closely associated with the initiation and progression of inflammatory joint diseases. In this review, we provide a comprehensive overview of the evolving knowledge regarding the structural and functional aspects of lymphatic vessels in the pathogenesis of RA and OA. In addition, we summarized the potential regulatory mechanisms underlying the modulation of lymphatic function in maintaining joint homeostasis during inflammatory conditions, and further discuss the distinctions between RA and OA. Moreover, we describe therapeutic strategies for inflammatory arthritis based on lymphatic vessels, including the promotion of lymphangiogenesis, restoration of proper lymphatic vessel function through anti-inflammatory approaches, enhancement of lymphatic contractility and drainage, and alleviation of congestion within the lymphatic system through the elimination of inflammatory cells. At last, we envisage potential research perspectives and strategies to target lymphatic vessels in treating these inflammatory joint diseases.


Subject(s)
Arthritis, Rheumatoid , Lymphatic Vessels , Osteoarthritis , Humans , Arthritis, Rheumatoid/pathology , Osteoarthritis/metabolism , Lymphatic Vessels/metabolism , Inflammation/metabolism , Lymphangiogenesis
6.
Adv Sci (Weinh) ; 11(7): e2306143, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38083984

ABSTRACT

Macrophages are heterogenic phagocytic cells that play distinct roles in physiological and pathological processes. Targeting different types of macrophages has shown potent therapeutic effects in many diseases. Although many approaches are developed to target anti-inflammatory macrophages, there are few researches on targeting pro-inflammatory macrophages, which is partially attributed to their non-s pecificity phagocytosis of extracellular substances. In this study, a novel recombinant protein is constructed that can be anchored on an exosome membrane with the purpose of targeting pro-inflammatory macrophages via antigen recognition, which is named AnCar-ExoLaIMTS . The data indicate that the phagocytosis efficiencies of pro-inflammatory macrophages for different AnCar-ExoLaIMTS show obvious differences. The AnCar-ExoLaIMTS3 has the best targeting ability for pro-inflammatory macrophages in vitro and in vivo. Mechanically, AnCar-ExoLaIMTS3 can specifically recognize the leucine-rich repeat domain of the TLR4 receptor, and then enter into pro-inflammatory macrophages via the TLR4-mediated receptor endocytosis pathway. Moreover, AnCar-ExoLaIMTS3 can efficiently deliver therapeutic cargo to pro-inflammatory macrophages and inhibit the synovial inflammatory response via downregulation of HIF-1α level, thus ameliorating the severity of arthritis in vivo. Collectively, the work established a novel gene/drug delivery system that can specifically target pro-inflammatory macrophages, which may be beneficial for the treatments of arthritis and other inflammatory diseases.


Subject(s)
Arthritis , Macrophages , Humans , Macrophages/metabolism , Arthritis/drug therapy , Phagocytosis , Anti-Inflammatory Agents/therapeutic use , Cell Communication
7.
Exp Mol Med ; 55(11): 2376-2389, 2023 11.
Article in English | MEDLINE | ID: mdl-37907740

ABSTRACT

Osteoarthritis (OA) is a full-joint, multifactorial, degenerative and inflammatory disease that seriously affects the quality of life of patients due to its disabling and pain-causing properties. ER stress has been reported to be closely related to the progression of OA. The inositol-requiring enzyme 1α/X-box-binding protein-1 spliced (IRE1α/XBP1s) pathway, which is highly expressed in the chondrocytes of OA patients, promotes the degradation and refolding of abnormal proteins during ER stress and maintains the stability of the ER environment of chondrocytes, but its function and the underlying mechanisms of how it contributes to the progression of OA remain unclear. This study investigates the role of IRE1α/ERN1 in OA. Specific deficiency of ERN1 in chondrocytes spontaneously resulted in OA-like cartilage destruction and accelerated OA progression in a surgically induced arthritis model. Local delivery of AdERN1 relieved degradation of the cartilage matrix and prevented OA development in an ACLT-mediated model. Mechanistically, progranulin (PGRN), an intracellular chaperone, binds to IRE1α, promoting its phosphorylation and splicing of XBP1u to generate XBP1s. XBP1s protects articular cartilage through TNF-α/ERK1/2 signaling and further maintains collagen homeostasis by regulating type II collagen expression. The chondroprotective effect of IRE1α/ERN1 is dependent on PGRN and XBP1s splicing. ERN1 deficiency accelerated cartilage degeneration in OA by reducing PGRN expression and XBP1s splicing, subsequently decreasing collagen II expression and triggering collagen structural abnormalities and an imbalance in collagen homeostasis. This study provides new insights into OA pathogenesis and the UPR and suggests that IRE1α/ERN1 may serve as a potential target for the treatment of joint degenerative diseases, including OA.


Subject(s)
Cartilage, Articular , Osteoarthritis , Humans , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Progranulins/metabolism , Endoribonucleases/genetics , Endoribonucleases/metabolism , Quality of Life , Osteoarthritis/metabolism , Chondrocytes/metabolism , Cartilage, Articular/metabolism , Collagen/metabolism , Homeostasis , X-Box Binding Protein 1/genetics , X-Box Binding Protein 1/metabolism
8.
Ann Biomed Eng ; 51(12): 2735-2748, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37482574

ABSTRACT

Regeneration of ruptured Achilles tendon remains a clinical challenge owing to its limited regenerative capacity. Dynamic tensile stress plays a positive role in the regeneration of tendon, although the specific underlying mechanisms remain unclear. In this study, the Achilles tendon defect-regeneration model was created in male C57BL/6 mice aged 8 weeks. The animals were randomly assigned to four groups-repair, non-repair, repair with fixation, and non-repair with fixation. The repair group and repair with fixation group adopted the panda rope bridge technique (PRBT) repair method. Our results demonstrated the presence of more densely aligned and mature collagen fibers, as well as more tendon-related makers, in the repair group at both 2- and 4-week post-surgery. Furthermore, the biomechanical strength of the regenerated tendon in the repair group was highly improved. Most importantly, the expressions of integrin αv and its downstream and the phosphorylation levels of FAK and ERK were remarkably higher in the repair group than in the other groups. Furthermore, blocking FAK or ERK with selective inhibitors PF573228 and U0126 resulted in obvious adverse effects on the histological structure of the regenerated Achilles tendon. In summary, this study demonstrated that dynamic tensile stress based on the PRBT could effectively promote the regeneration of the Achilles tendon, suggesting that dynamic tensile stress enhances the cell proliferation and tenogenic differentiation via the activation of the integrin/FAK/ERK signaling pathway.


Subject(s)
Achilles Tendon , Tendon Injuries , Mice , Animals , Male , Mice, Inbred C57BL , Regeneration , Disease Models, Animal
9.
Nat Genet ; 54(12): 1946-1958, 2022 12.
Article in English | MEDLINE | ID: mdl-36456880

ABSTRACT

Specialized connective tissues, including bone and adipose tissues, control various physiological activities, including mineral and energy homeostasis. However, the identity of stem cells maintaining these tissues throughout adulthood remains elusive. By conducting genetic lineage tracing and cell depletion experiments in newly generated knock-in Cre/CreERT2 lines, we show here that rare Prrx1-expressing cells act as stem cells for bone, white adipose tissue and dermis in adult mice, which are indispensable for the homeostasis and repair of these tissues. Single-cell profiling reveals the cycling and multipotent nature of Prrx1-expressing cells and the stemness of these cells is further validated by transplantation assays. Moreover, we identify the cell surface markers for Prrx1-expressing stem cells and show that the activities of these stem cells are regulated by Wnt signaling. These findings expand our knowledge of connective tissue homeostasis/regeneration and may help improve stem-cell-based therapies.


Subject(s)
Adipose Tissue, White , Stem Cells , Mice , Animals
10.
J Orthop Translat ; 36: 164-176, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36263384

ABSTRACT

Background: Vismodegib, as an exogenous Indian hedgehog (Ihh) antagonist, has been approved by the Food and Drug Administration (FDA) for the clinical treatment of patients with basal cell carcinoma, and previous observations implicate the potential therapeutic of vismodegib in osteoarthritis treatment. However, there is no direct evidence for the role of Ihh signaling in intervertebral discs (IVDs) homeostasis of adult mice. The aim of the present study is to assess the effect of systemic administration of Smoothened inhibitor (SMOi) - vismodegib on IVDs homeostasis during the adult stage. Methods: The expression of glioma-associated oncogene homolog 1 (Gli1), the downstream targeting gene of Ihh signaling, in IVDs of adult mice after receiving systemic administration of SMOi was examined by immunohistochemistry. The pathological changes of vertebral bodies after SMOi treatment were evaluated by X-ray and micro-CT. The effects of SMOi on homeostasis of IVDs including cartilaginous endplates (CEP), growth plates (GP) and annulus fibrous (AF) were evaluated by histological analysis. The expressions of Aggrecan, Matrix metalloproteinase 13 (MMP13) and Runt-related transcription factor 2 (Runx2), in IVDs were also investigated by immunohistochemistry. Changes in chondrocyte apoptosis and proliferation in IVDs were evaluated by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay and analyzing the expression of the cell proliferation antigen Ki-67. Results: Systemic administration of SMOi significantly decreased the expression of Gli1 in IVDs that indicating effective inhibition of Ihh signaling. Bone mass of vertebral bodies was diminished after SMOi treatment. Moreover, IVDs degeneration (IDD) like defects including CEP sclerosis, degenerative nucleus pulposus (NP) and fissure within AF, as well as narrowed or fused GP and loss bone mass of vertebral bodies was observed in SMOi-treated mice. The severity of IDD was time-dependent with the administration of SMOi treatment after 2-8 weeks. The expressions of Aggrecan, MMP13 and Runx2 in IVDs of mice receiving SMOi treatment were significantly decreased. In addition, chondrocyte apoptosis was significantly enhanced, while chondrocyte proliferation was significantly inhibited. Conclusions: Our study propose that systemic administration of vismodegib damages IVDs homeostasis via inhibition of Ihh signaling in adult mice. The clinical application of Ihh signaling antagonists such as vismodegib should be careful considering these side adverse. The Translational Potential of this Article: Vismodegib as an exogenous antagonist of Ihh signaling has been approved by the FDA for the clinical treatment of patients with basal cell carcinoma. However, it is still unknown whether vismodegib will has adverse effects on the patient or animal model of IVDs cartilage homeostasis. Based on our study, systemic administration of vismodegib damages IVDs homeostasis via inhibition of Ihh signaling in adult mice and special attention should be paid to the clinical application of vismodegib.

11.
Stem Cell Res Ther ; 13(1): 227, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35659742

ABSTRACT

BACKGROUND: Intervertebral disc degeneration (IVDD) can cause low back pain, a major public health concern. IVDD is characterized with loss of cells especially those in nucleus pulposus (NP), due to the limited proliferative potential and regenerative ability. Few studies, however, have been carried out to investigate the in vivo proliferation events of NP cells and the cellular contribution of a specific subpopulation of NP during postnatal growth or regeneration. METHODS: We generated FGFR3-3*Flag-IRES-GFP mice and crossed FGFR3-CreERT2 mice with Rosa26-mTmG, Rosa26-DTA and Rosa26-Confetti mice, respectively, to perform inducible genetic tracing studies. RESULTS: Expression of FGFR3 was found in the outer region of NP with co-localized expressions of proliferating markers. By fate mapping studies, FGFR3-positive (FGFR3+) NP cells were found proliferate from outer region to inner region of NP during postnatal growth. Clonal lineage tracing by Confetti mice and ablation of FGFR3·+ NP cells by DTA mice further revealed that the expansion of the FGFR3+ cells was required for the morphogenesis and homeostasis of postnatal NP. Moreover, in degeneration and regeneration model of mouse intervertebral disc, FGFR3+ NP cells underwent extensive expansion during the recovery stage. CONCLUSION: Our present work demonstrates that FGFR3+ NP cells are novel subpopulation of postnatal NP with long-existing proliferative capacity shaping the adult NP structure and participating in the homeostasis maintenance and intrinsic repair of NP. These findings may facilitate the development of new therapeutic approaches for IVD regeneration.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Low Back Pain , Nucleus Pulposus , Animals , Cells, Cultured , Intervertebral Disc Degeneration/therapy , Mice , Nucleus Pulposus/metabolism
12.
Phys Chem Chem Phys ; 24(15): 8624-8630, 2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35355031

ABSTRACT

A new Ni-HY zeolite with lamellar-crystals was prepared as a catalyst for phenanthrene hydrocracking. It showed significantly improved reactivity and BTX (benzene, toluene and xylene) selectivity (up to 99.1% and 75.6%, respectively), depending on a reasonable synergistic effect between its excellent internal-diffusion and the high-efficiency concerted catalysis of surface metal-Ni active sites and acid sites. In particular, compared with a conventional Ni-HY with diamond-shaped crystals, its significantly shortened diffusion-reaction path of the micropore system in the lamellar crystals greatly enhanced the diffusion-reaction efficiency of large-molecule phenanthrene and polycyclic intermediates and remarkably improved the utilization of both pores and internal reactive sites, powerfully promoting phenanthrene into benzene series conversion. The much decreased diffusion-residence time of benzene-series products in shortened channels also effectively weakened the further cracking loss of the benzene-ring, leading to enhanced BTX selectivity. Moreover, this shorter-channel Ni-HY catalyst with a higher external surface area and mesoporous volume also exhibited greatly improved catalytic stability attributed to its stronger capabilities of accommodating coke and resisting coke-deposition. The phenanthrene conversion of >76.3% and the BTX yield of >46.3% were obtained during a 60 h on-stream reaction.

13.
Bone Res ; 10(1): 2, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34983922

ABSTRACT

The intervertebral disc (IVD) is the largest avascular tissue. Hypoxia-inducible factors (HIFs) play essential roles in regulating cellular adaptation in the IVD under physiological conditions. Disc degeneration disease (DDD) is one of the leading causes of disability, and current therapies are ineffective. This study sought to explore the role of HIFs in DDD pathogenesis in mice. The findings of this study showed that among HIF family members, Hif1α was significantly upregulated in cartilaginous endplate (EP) and annulus fibrosus (AF) tissues from human DDD patients and two mouse models of DDD compared with controls. Conditional deletion of the E3 ubiquitin ligase Vhl in EP and AF tissues of adult mice resulted in upregulated Hif1α expression and age-dependent IVD degeneration. Aberrant Hif1α activation enhanced glycolytic metabolism and suppressed mitochondrial function. On the other hand, genetic ablation of the Hif1α gene delayed DDD pathogenesis in Vhl-deficient mice. Administration of 2-methoxyestradiol (2ME2), a selective Hif1α inhibitor, attenuated experimental IVD degeneration in mice. The findings of this study show that aberrant Hif1α activation in EP and AF tissues induces pathological changes in DDD, implying that inhibition of aberrant Hif1α activity is a potential therapeutic strategy for DDD.

14.
Int J Biol Sci ; 18(1): 315-330, 2022.
Article in English | MEDLINE | ID: mdl-34975335

ABSTRACT

X-box binding protein 1(XBP1) is a critical component for unfolded protein response (UPR) in ER stress. According to previous studies performed with different XBP1-deficient mice, the XBP1 gene affects mouse cartilage development and causes other related diseases. However, how the complete transcriptome, including mRNA and ncRNAs, affects the function of cartilage and other tissues when XBP1 is deficient in chondrocytes is unclear. In this study, we aimed to screen the differentially expressed (DE) mRNAs, circRNAs, lncRNAs and miRNAs in XBP1 cartilage-specific knockout (CKO) mice using high throughput sequencing and construct the circRNA-miRNA-mRNA and lncRNA-miRNA-mRNA regulatory networks. DE LncRNAs (DE-LncRNAs), circRNAs (DE-circRNAs), miRNAs (DE-miRNAs), and mRNAs [differentially expressed genes (DEGs)] between the cartilage tissue of XBP1 CKO mice and controls were identified, including 441 DE-LncRNAs, 15 DE-circRNAs, 6 DE-miRNAs, and 477 DEGs. Further, 253,235 lncRNA-miRNA-mRNA networks and 1,822 circRNA-miRNA-mRNA networks were constructed based on the correlation between lncRNAs/circRNAs, miRNAs, mRNAs. The whole transcriptome analysis revealed that XBP1 deficiency in cartilage affects the function of cartilage and other different tissues, as well as associated diseases. Overall, our findings may provide potential biomarkers and mechanisms for the diagnosis and treatment of cartilage and other related diseases.


Subject(s)
Cartilage/metabolism , MicroRNAs/metabolism , RNA, Circular/metabolism , RNA, Long Noncoding/metabolism , RNA, Messenger/metabolism , X-Box Binding Protein 1/deficiency , Animals , Gene Expression Profiling , Mice
15.
BMJ Open ; 12(12): e063660, 2022 12 08.
Article in English | MEDLINE | ID: mdl-36600381

ABSTRACT

OBJECTIVE: To explore the prevalence and patterns of multimorbidity in population with different genders and age ranges. DESIGN: A cross-sectional study. SETTING: National Health and Nutrition Examination Surveys database. PARTICIPANTS: 12 576 patients. PRIMARY AND SECONDARY OUTCOME MEASURES: The prevalence and patterns of multimorbidity. RESULTS: High cholesterol had the highest prevalence in all population (33.4 (95% CI: 32.0 to 34.9)) and males. In females <65 years, the most prevalent disease was sleep disorder (32.1 (95% CI: 29.6 to 34.5)) while in females ≥65 years, hypertension was the most prevalent disease (63.9 (95% CI: 59.9 to 67.9)). Hypertension and high cholesterol were associated with the highest support (occur together most frequently) in all population regardless of genders. Hypertension displayed the highest betweenness centrality (mediating role in the network) followed by high cholesterol and arthritis in all population. For males aged <65 years, hypertension and high cholesterol presented the highest betweenness centrality. In males ≥65 years, hypertension, high cholesterol and arthritis were the top three diseases of degree centrality (direct association with other conditions). As for females ≥65 years, hypertension showed the highest betweenness centrality followed by high cholesterol and arthritis. The associations of hypertension, arthritis and one other item with high cholesterol presented the highest support in all population. In males, the associations of depression, hypertension with sleep disorders had the highest lift (the chance of co-occurrence of the conditions and significant association). Among females, the associations of depression, arthritis with sleep disorders had the highest lift. CONCLUSION: Hypertension and high cholesterol were prevalent in all population, regardless of females and males. Hypertension and high cholesterol, arthritis and hypertension, and diabetes and hypertension were more likely to coexist. The findings of this study might help make plans for the management and primary care of people with one or more diseases.


Subject(s)
Arthritis , Hypertension , Sleep Wake Disorders , Humans , Adult , Male , Female , Multimorbidity , Nutrition Surveys , Cross-Sectional Studies , Hypertension/epidemiology , Cholesterol , Sleep Wake Disorders/epidemiology , Prevalence
16.
Int J Biol Sci ; 17(15): 4140-4153, 2021.
Article in English | MEDLINE | ID: mdl-34803488

ABSTRACT

Systemic application of glucocorticoids is an essential anti-inflammatory and immune-modulating therapy for severe inflammatory or autoimmunity conditions. However, its long-term effects on articular cartilage of patients' health need to be further investigated. In this study, we studied the effects of dexamethasone (Dex) on the homeostasis of articular cartilage and the progress of destabilization of medial meniscus (DMM)-induced osteoarthritis (OA) in adult mice. Long-term administration of Dex aggravates the proteoglycan loss of articular cartilage and drastically accelerates cartilage degeneration under surgically induced OA conditions. In addition, Dex increases calcium content in calcified cartilage layer of mice and the samples from OA patients with a history of long-term Dex treatment. Moreover, long term usage of Dex results in decrease subchondral bone mass and bone density. Further studies showed that Dex leads to calcification of extracellular matrix of chondrocytes partially through activation of AKT, as well as promotes apoptosis of chondrocytes in calcified cartilage layer. Besides, Dex weakens the stress-response autophagy with the passage of time. Taken together, our data indicate that long-term application of Dex may predispose patients to OA and or even accelerate the OA disease progression development of OA patients.


Subject(s)
Apoptosis/drug effects , Chondrocytes/drug effects , Chondrocytes/physiology , Dexamethasone/adverse effects , Extracellular Matrix/drug effects , Osteoarthritis/etiology , Animals , Calcinosis , Dexamethasone/administration & dosage , Drug Administration Schedule , Glucocorticoids/administration & dosage , Glucocorticoids/adverse effects , Homeostasis , Male , Mice , Mice, Inbred C57BL , Osteoarthritis/pathology
17.
ACS Nano ; 15(10): 15874-15891, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34586802

ABSTRACT

The clinical application of small interfering RNA (siRNA) drugs provides promising opportunities to develop treatment strategies for autoimmune inflammatory diseases. In this study, siRNAs targeting the endoplasmic reticulum to nucleus signaling 1 (ERN1) gene (siERN1) were screened. Two cationic polymers, polyethylenimine (PEI) and poly(ß-amino amine) (PBAA), which can improve the efficiency of the siRNA transfection, were used as siERN1 delivery carriers. They were implemented to construct a nanodrug delivery system with macrophage-targeting ability and dual responsiveness for the treatment of autoimmune inflammatory diseases. In terms of the mechanism, siERN1 can regulate the intracellular calcium ion concentration by interfering with the function of inositol 1,4,5-trisphosphate receptor 1/3 (IP3R1/3) and thus inducing M2 polarization of macrophages. Furthermore, siERN1-nanoprodrug [FA (folic acid)-PEG-R(RKKRRQRRR)-NPs(ss-PBAA-PEI)@siERN1] acts as a conductor of macrophage polarization by controlling the calcium ion concentration and is an inhibitor of MyD88-dependent Toll-like receptor signaling. The results revealed that the FA-PEG-R-NPs@siERN1 has universal biocompatibility, long-term drug release responsiveness, superior targeting properties, and therapeutic effects in mouse collagen-induced arthritis and inflammatory bowel disease models. In conclusion, this study reveals a potential strategy to treat autoimmune inflammatory disorders.


Subject(s)
Polyethyleneimine , Toll-Like Receptors , Animals , Macrophages , Mice , RNA, Small Interfering , Transfection
18.
Bone Res ; 9(1): 37, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34400611

ABSTRACT

A comprehensive understanding of the cellular heterogeneity and molecular mechanisms underlying the development, homeostasis, and disease of human intervertebral disks (IVDs) remains challenging. Here, the transcriptomic landscape of 108 108 IVD cells was mapped using single-cell RNA sequencing of three main compartments from young and adult healthy IVDs, including the nucleus pulposus (NP), annulus fibrosus, and cartilage endplate (CEP). The chondrocyte subclusters were classified based on their potential regulatory, homeostatic, and effector functions in extracellular matrix (ECM) homeostasis. Notably, in the NP, a PROCR+ resident progenitor population showed enriched colony-forming unit-fibroblast (CFU-F) activity and trilineage differentiation capacity. Finally, intercellular crosstalk based on signaling network analysis uncovered that the PDGF and TGF-ß cascades are important cues in the NP microenvironment. In conclusion, a single-cell transcriptomic atlas that resolves spatially regulated cellular heterogeneity together with the critical signaling that underlies homeostasis will help to establish new therapeutic strategies for IVD degeneration in the clinic.

19.
Nat Commun ; 12(1): 4391, 2021 07 19.
Article in English | MEDLINE | ID: mdl-34282140

ABSTRACT

Acquired heterotopic ossification (HO) is the extraskeletal bone formation after trauma. Various mesenchymal progenitors are reported to participate in ectopic bone formation. Here we induce acquired HO in mice by Achilles tenotomy and observe that conditional knockout (cKO) of fibroblast growth factor receptor 3 (FGFR3) in Col2+ cells promote acquired HO development. Lineage tracing studies reveal that Col2+ cells adopt fate of lymphatic endothelial cells (LECs) instead of chondrocytes or osteoblasts during HO development. FGFR3 cKO in Prox1+ LECs causes even more aggravated HO formation. We further demonstrate that FGFR3 deficiency in LECs leads to decreased local lymphatic formation in a BMPR1a-pSmad1/5-dependent manner, which exacerbates inflammatory levels in the repaired tendon. Local administration of FGF9 in Matrigel inhibits heterotopic bone formation, which is dependent on FGFR3 expression in LECs. Here we uncover Col2+ lineage cells as an origin of lymphatic endothelium, which regulates local inflammatory microenvironment after trauma and thus influences HO development via FGFR3-BMPR1a pathway. Activation of FGFR3 in LECs may be a therapeutic strategy to inhibit acquired HO formation via increasing local lymphangiogenesis.


Subject(s)
Bone Morphogenetic Protein Receptors, Type I/genetics , Bone Morphogenetic Protein Receptors, Type I/metabolism , Lymphatic Vessels/metabolism , Ossification, Heterotopic/metabolism , Receptor, Fibroblast Growth Factor, Type 3/genetics , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Achilles Tendon , Animals , Disease Models, Animal , Endothelial Cells/metabolism , Endothelium, Lymphatic/metabolism , Gene Knockdown Techniques , Lymphangiogenesis , Male , Mesenchymal Stem Cells , Mice , Tenotomy
20.
Orthop J Sports Med ; 9(6): 23259671211008436, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34179202

ABSTRACT

BACKGROUND: Although nonoperative management of acute Achilles tendon rupture (ATR) is a reasonable option, surgical repair has attracted attention for young and active patients. More reliable Achilles tendon repair techniques are needed to enhance recovery after ATR in this population. PURPOSE/HYPOTHESIS: To biomechanically analyze the panda rope bridge technique (PRBT) and compare it with other minimally invasive repair techniques over a simulated, progressive rehabilitation program. It was hypothesized that PRBT would result in better biomechanical properties and enhanced recovery after ATR. STUDY DESIGN: Controlled laboratory study. METHODS: An Achilles tendon rupture was created 4 cm from the distal tendon insertion site in 40 bovine lower extremities, and specimens were then randomly allocated to 5 Achilles tendon repair techniques: (1) Achillon, (2) modified Achillon, (3) Percutaneous Achilles Repair System (PARS), (4) modified PARS, and (5) PRBT. Each group was subjected to a cyclic loading protocol that was representative of progressive postoperative rehabilitation for ATR (250 cycles at 1 Hz for each loading stage: 20-100 N, 20-200 N, 20-300 N, and 20-400 N). RESULTS: The PRBT technique demonstrated significantly less elongation (1.62 ± 0.25 mm) than the 4 other repair techniques after the first loading stage of 20 to 100 N (P < .05). All specimens in the 4 other groups developed a large gap (elongation ≥5 mm) at the 20- to 200-N loading stage. When overall biomechanical performance was examined, the PRBT group exhibited higher strength (20-400 N) and more mean loading cycles (984 ± 10) compared with the 4 other groups (P < .05). CONCLUSION: In this bovine model, PRBT biomechanically outperformed the other minimally invasive Achilles tendon repair techniques that were tested and could therefore meet the requirements of accelerated rehabilitation. CLINICAL RELEVANCE: The reduced tendency for premature rerupture and the overall improved biomechanical properties of PRBT suggest that ATR patients treated with PRBT may more readily complete early and aggressive postoperative rehabilitation protocols. In addition, they may have a lower risk of early irreversible suture failure.

SELECTION OF CITATIONS
SEARCH DETAIL
...