Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 11: e15529, 2023.
Article in English | MEDLINE | ID: mdl-37366424

ABSTRACT

Mangrove plants contain a variety of secondary metabolites, including flavonoids, polyphenols, and volatiles, which are important for their survival and adaptation to the coastal environment, as well as for producing bioactive compounds. To reveal differences in these compounds among five mangrove species' leaf, root, and stem, the total contents of flavonoids and polyphenols, types and contents of volatiles were determined, analyzed and compared. The results showed that Avicennia marina leaves contained the highest levels of flavonoids and phenolics. In mangrove parts, flavonoids are usually higher than phenolic compounds. A total of 532 compounds were detected by a gas chromatography-mass spectrometry (GC-MS) method in the leaf, root, and stem parts of five mangrove species. These were grouped into 18 classes, including alcohols, aldehydes, alkaloids, alkanes, etc. The number of volatile compounds in A. ilicifolius (176) and B. gymnorrhiza (172) was lower than in the other three species. The number of volatile compounds and their relative contents differed among all three parts of five mangrove species, where the mangrove species factor had a greater impact than the part factor. A total of 71 common compounds occurring in more than two species or parts were analyzed by a PLS-DA model. One-way ANOVA revealed 18 differential compounds among mangrove species and nine differential compounds among parts. Principal component analysis and hierarchical clustering analysis showed that both unique and common compounds significantly differed in composition and concentration between species and parts. In general, A. ilicifolius and B. gymnorrhiza differed significantly from the other species in terms of compound content, while the leaves differed significantly from the other parts. VIP screening and pathway enrichment analysis were performed on 17 common compounds closely related to mangrove species or parts. These compounds were mainly involved in terpenoid pathways such as C10 isoprenoids and C15 isoprenoids and fatty alcohols. The correlation analysis showed that the content of flavonoids/phenolics, the number of compounds, and the content of some common compounds in mangroves were correlated with their salt and waterlogging tolerance levels. These findings will help in the development of genetic varieties and medicinal utilization of mangrove plants.


Subject(s)
Avicennia , Polyphenols , Polyphenols/analysis , Flavonoids/analysis , Plant Leaves/chemistry , Terpenes/analysis
2.
Genes (Basel) ; 14(3)2023 03 20.
Article in English | MEDLINE | ID: mdl-36981022

ABSTRACT

Acanthus ilicifolius is an important medicinal plant in mangrove forests, which is rich in secondary metabolites with various biological activities. In this study, we used transcriptomic analysis to obtain differentially expressed genes in the flavonoid metabolic pathway and metabolomic methods to detect changes in the types and content in the flavonoid metabolic synthesis pathway. The results showed that DEGs were identified in the mature roots vs. leaves comparison (9001 up-regulated and 8910 down-regulated), mature roots vs. stems comparison (5861 up-regulated and 7374 down-regulated), and mature stems vs. leaves comparison (10,837 up-regulated and 11,903 down-regulated). Furthermore, two AiCHS genes and four AiCHI genes were up-regulated in the mature roots vs. stems of mature A. ilicifolius, and were down-regulated in mature stems vs. leaves, which were highly expressed in the A. ilicifolius stems. A total of 215 differential metabolites were found in the roots vs. leaves of mature A. ilicifolius, 173 differential metabolites in the roots vs. stems, and 228 differential metabolites in the stems vs. leaves. The metabolomic results showed that some flavonoids in A. ilicifolius stems were higher than in the roots. A total of 18 flavonoid differential metabolites were detected in the roots, stems, and leaves of mature A. ilicifolius. In mature leaves, quercetin-3-O-glucoside-7-O-rhamnoside, gossypitrin, isoquercitrin, quercetin 3,7-bis-O-ß-D-glucoside, and isorhamnetin 3-O-ß-(2″-O-acetyl-ß-D-glucuronide) were found in a high content, while in mature roots, di-O-methylquercetin and isorhamnetin were the major compounds. The combined analysis of the metabolome and transcriptome revealed that DEGs and differential metabolites were related to flavonoid biosynthesis. This study provides a theoretical basis for analyzing the molecular mechanism of flavonoid synthesis in A. ilicifolius and provides a reference for further research and exploitation of its medicinal value.


Subject(s)
Acanthaceae , Transcriptome , Flavonoids , Metabolome , Gene Expression Profiling/methods , Acanthaceae/metabolism
3.
PeerJ ; 10: e14351, 2022.
Article in English | MEDLINE | ID: mdl-36389400

ABSTRACT

The timber species Eucalyptus camaldulensis is one of the most important in southern China. Therefore, it is essential to understand the photosynthetic pattern in eucalyptus leaves. In the present study, eighteen photosynthesis-related genes were analyzed using bioinformatics methods. The results indicated that there were ten differentially expressed ribose-5-phosphate isomerase genes (RPI), and six of them were up-regulated in the mature leaves compared to the young leaves, while others were down-regulated. The differential expression of four rubisco methyltransferase genes (RBCMT) were observed. Two of them were up-regulated, while two were down-regulated in mature leaves compared to young leaves. Furthermore, two ribulose-phosphate-3-epimerase genes (RPE) were up-regulated in the mature leaves compared to the young leaves. In contrast, two genes involved in triosephosphate isomerase (TIM) were down-regulated in mature leaves compared with young leaves. The current study provides basic information about the transcriptome of E. camaldulensis and lays a foundation for further research in developing and utilizing important photosynthetic genes.


Subject(s)
Eucalyptus , Eucalyptus/genetics , Transcriptome/genetics , Photosynthesis/genetics , Plant Leaves/genetics , China
4.
Gene ; 824: 146396, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35278632

ABSTRACT

Eucalyptus (including Eucalyptus grandis) is an excellent wood forest tree species that provides a large number of plant fiber raw materials for the paper and timber industries. Cellulose, an essential structural component in plant cell walls, is a renewable biomass resource that plays a very important role in nature. There is still a lack of research on the role of gene regulation in cellulose synthesis. To study the genes of cellulose synthesis, the wood chemical indexes of Eucalyptus grandis were analyzed by taking three different parts from the main stem of Eucalyptus grandis as raw materials. The results showed that the cellulose content in the middle of the trunk was significantly higher than that at the chest diameter and at the upper part of the trunk. A total of 296 differentially expressed genes (DEGs) were obtained from the three site by transcriptome, and 19 key candidate genes were related to the synthesis of cellulose in Eucalyptus grandis. EgrEXP1 and EgrHEX4 were overexpressed in 84 K poplar, the content of cellulose and lignin in genetically modified plants was significantly higher than that of wild type 84 K poplar. Also, the average plant height and average root count were significantly higher than those of control plants, and the average diameter of the middle and stem bases were significantly larger than those of control plants. In this study, the genes related to cellulose synthesis in Eucalyptus grandis are studied, which serve as a strong foundation for understanding the molecular regulation of cellulose synthesis in plants.


Subject(s)
Eucalyptus , Cellulose/genetics , Cellulose/metabolism , Eucalyptus/metabolism , Gene Expression Regulation, Plant , Lignin/genetics , Lignin/metabolism , Wood/genetics , Wood/metabolism
5.
Sci Rep ; 10(1): 20467, 2020 11 24.
Article in English | MEDLINE | ID: mdl-33235240

ABSTRACT

Sacha inchi (Plukenetia volubilis L.) is a shrub native to Amazon rainforests that's of commercial interest as its seeds contain 35-60% edible oil (dry weight). This oil is one of the healthiest vegetable oils due to its high polyunsaturated fatty acid content and favourable ratio of omega-6 to omega-3 fatty acids. De novo transcriptome assembly and comparative analyses were performed on sacha inchi seeds from five stages of seed development in order to identifying genes associated with oil accumulation and fatty acid production. Of 30,189 unigenes that could be annotated in public databases, 20,446 were differentially expressed unigenes. A total of 14 KEGG pathways related to lipid metabolism were found, and 86 unigenes encoding enzymes involved in α-linolenic acid (ALA) biosynthesis were obtained including five unigenes encoding FATA (Unigene0008403), SAD (Unigene0012943), DHLAT (Unigene0014324), α-CT (Unigene0022151) and KAS II (Unigene0024371) that were significantly up-regulated in the final stage of seed development. A total of 66 unigenes encoding key enzymes involved in the synthesis of triacylglycerols (TAGs) were found, along with seven unigenes encoding PDCT (Unigene0000909), LPCAT (Unigene0007846), Oleosin3 (Unigene0010027), PDAT1 (Unigene0016056), GPDH (Unigene0022660), FAD2 (Unigene0037808) and FAD3 (Unigene0044238); these also proved to be up-regulated in the final stage of seed development.


Subject(s)
Euphorbiaceae/growth & development , Gene Expression Profiling/methods , Plant Oils/metabolism , Plant Proteins/genetics , Euphorbiaceae/genetics , Euphorbiaceae/metabolism , Fatty Acids, Unsaturated/metabolism , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , High-Throughput Nucleotide Sequencing , Molecular Sequence Annotation , Seeds/genetics , Seeds/growth & development , Seeds/metabolism , Sequence Analysis, RNA , alpha-Linolenic Acid/metabolism
6.
Mycologia ; 103(6): 1384-410, 2011.
Article in English | MEDLINE | ID: mdl-21700641

ABSTRACT

Many species in the Cryphonectriaceae cause diseases of trees, including those in the genera Eucalyptus and Syzygium. During disease surveys on these trees in southern China, fruiting structures typical of fungi in the Cryphonectriaceae and associated with dying branches and stems were observed. Morphological comparisons suggested that these fungi were distinct from the well known Chrysoporthe deuterocubensis, also found on these trees in China. The aim of this study was to identify these fungi and evaluate their pathogenicity to Eucalyptus clones/species as well as Syzygium cumini. Three morphologically similar fungal isolates collected previously from Indonesia also were included in the study. Isolates were characterized based on comparisons of morphology and DNA sequence data for the partial LSU and ITS nuclear ribosomal DNA, ß-tubulin and TEF-1α gene regions. After glasshouse trials to select virulent isolates field inoculations were undertaken to screen different commercial Eucalyptus clones/species and S. cumini trees for susceptibility to infection. Phylogenetic analyses showed that the Chinese isolates and those from Indonesia reside in a clade close to previously identified South African Celoporthe isolates. Based on morphology and DNA sequence comparisons, four new Celoporthe spp. were identified and they are described as C. syzygii, C. eucalypti, C. guangdongensis and C. indonesiensis. Field inoculations indicated that the three Chinese Celoporthe spp., C. syzygii, C. eucalypti and C. guangdongensis, are pathogenic to all tested Eucalyptus and S. cumini trees. Significant differences in the susceptibility of the inoculated Eucalyptus clones/species suggest that it will be possible to select disease-tolerant planting stock for forestry operations in the future.


Subject(s)
Ascomycota/classification , Eucalyptus/microbiology , Syzygium/microbiology , Ascomycota/cytology , Ascomycota/genetics , Ascomycota/pathogenicity , China , Indonesia , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...