Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Nat Sci Sleep ; 16: 663-674, 2024.
Article in English | MEDLINE | ID: mdl-38841051

ABSTRACT

Background: Primary liver cancer (PLC) is a fatal malignancy, sleep quality and gut microbiota were shown to be associated with PLC. However, the mechanism of how sleep quality affects PLC is unclear. This study aims to investigate the mediation/moderation effects of gut microbiota on sleep quality and the occurrence of PLC. Methods: The causality of sleep quality and the occurrence of PLC was detected through the Mendelian randomization (MR) analysis based on the data including 305,359 individuals (Finland Database) and 456,348 participants (UK Biobank). The primary method used for MR analysis was inverse-variance weighted analysis. Gut microbiota' mediation/moderation effects were uncovered in the case-control study including 254 patients with PLC and 193 people with benign liver diseases through the mediation/moderation effect analyses. People's sleep quality was evaluated through the Pittsburgh sleep quality index (PSQI). Results: Poor sleep quality could lead to PLC through the MR analysis (P = 0.026). The case-control study uncovered that Actinobacteria had mediation effects on the relationship between PSQI score, self-sleep quality, and the occurrence of PLC (P = 0.048, P = 0.046). Actinobacteria and Bifidobacterium could inhibit the development of PLC caused by short night sleep duration (P = 0.021, P = 0.022). Erysipelotrichales could weaken the influence of daytime dysfunction on PLC (P = 0.033). Roseburia modulated the contribution of nocturnal insomnia and poor sleep quality to PLC (P = 0.009, P = 0.017). Conclusion: Poor sleep quality was associated with PLC. Gut microbiota' mediation/moderation effects on poor sleep quality and the occurrence of PLC prompted an insightful idea for the prevention of PLC.

2.
Plant Physiol Biochem ; 212: 108745, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38795551

ABSTRACT

As a leaf vegetable, Gynura bicolor DC (G. bicolor) experiences a rapid deterioration after harvest including insufficient supply of sugar and destruction of cell membranes. In this research, four treatments were experimented on G. bicolor including the control (CK), 12% (g/g) sucrose (ST), 10 µL L-1 1-MCP (MT), and the combination of sucrose and 1-MCP (SMT). The results showed that three treated groups reduced respiratory rate, inhibited hexose consumption and promoted the decrease of starch and sucrose, which was converted into hexose including glucose and fructose to maintain cell membrane integrity. Meanwhile, the activities of AI, NI, SS-C, amylase, and corresponding gene expression levels were significantly up-regulated in three treated groups at 1 d, among which AI played a crucial role in regulating the accumulation of hexose. Furthermore, ST exerted a pronounced effect on hexose accumulation at the beginning while MT reduced hexose consumption through lowered respiratory metabolism during storage. Notably, SMT exhibited an optimum preservation effect on inhibited respiratory metabolism, maintaining cell membrane integrity, enhancing the retention of hexose, indicating that a synergistic effect of ST and MT were developed during storage.

3.
Int J Biol Macromol ; : 132618, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38795880

ABSTRACT

High-temperature blanching (HTB) is the primary process that causes texture softening in frozen yellow peaches. The implementation of low-temperature blanching reduced pectin methyl esterification, increased pectin cross-linking, and mitigated pectin depolymerization during the subsequent HTB, leading to the superior texture of frozen yellow peaches with enhanced water holding capacity, higher fracture stress, and initial modulus. However, adding 2 % calcium lactate (w/v) during low-temperature blanching did not further improve the texture of frozen yellow peaches. Instead, it softened the texture by reducing Na2CO3-soluble pectin (NSP) and increasing water-soluble pectin (WSP) content. This study provided a theoretical basis for applying low-temperature blanching to improve the texture of frozen yellow peaches.

4.
Front Pharmacol ; 15: 1302274, 2024.
Article in English | MEDLINE | ID: mdl-38711987

ABSTRACT

Objective: Unsafe medication practices and medication errors are a major cause of harm in healthcare systems around the world. This study aimed to explore the factors that influence the risk of medication and provide medication risk evaluation model for adults in Shanxi province, China. Methods: The data was obtained from the provincial questionnaire from May to December 2022, relying on the random distribution of questionnaires and online questionnaires by four hospitals in Shanxi Province. Multiple linear regression analysis was used to explore the factors affecting the KAP score of residents. Univariate and multivariate logistic regression was used to determine the independent risk factors, and the nomogram was verified by receiver operating characteristic curve, calibration and decision curve analysis. Results: A total of 3,388 questionnaires were collected, including 3,272 valid questionnaires. The average scores of drugs KAP were 63.2 ± 23.04, 33.05 ± 9.60, 23.67 ± 6.75 and 33.16 ± 10.87, respectively. On the evaluation criteria of the questionnaire, knowledge was scored "fair", attitude and practice were scored "good". Sex, monthly income, place of residence, insurance status, education level, and employment were regarded as independent risk factors for medication and a nomogram was established by them. Conclusion: Males, low-income, and low-educated people are important factors affecting the risk of medication. The application of the model can help residents understand the risk of their own medication behavior and reduce the harm of medication.

5.
Appl Opt ; 63(9): 2352-2361, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38568591

ABSTRACT

Improving the spectrum efficiency (SE) is an effective method to further enhance the data rate of bandwidth-limited underwater wireless optical communication (UWOC) systems. Non-orthogonal frequency-division multiplexing (NOFDM) with a compression factor of 0.5 can save half of the bandwidth without introducing any inter-carrier-interference (ICI) only if the total number of subcarriers is large enough, and we termed it as half-spectrum OFDM (HS-OFDM). To the best of our knowledge, this is the first reported work on a closed-form HS-OFDM signal in the discrete domain from the perspective of a correlation matrix. Due to the special mathematical property, no extra complex decoding algorithm is required at the HS-OFDM receiver, making it as simple as the conventional OFDM receiver. Compared with traditional OFDM, HS-OFDM can realize the same data rate, but with a larger signal-to-noise ratio (SNR) margin. To fully use the SNR resource of the communication system, we further propose a digital power division multiplexed HS-OFDM (DPDM-HS-OFDM) scheme to quadruple the SE of conventional OFDM for the bandwidth-starved UWOCs. The experimental results show that HS-OFDM can improve the receiver sensitivity by around 4 dB as opposed to conventional 4QAM-OFDM with the same data rate and SE. With the help of the DPDM-HS-OFDM scheme, the data rate of multi-user UWOC can reach up to 4.5 Gbps under the hard-decision forward error correction (HD-FEC) limit of a bit error rate (BER) of 3.8×10-3. Although there is some performance degradation in comparison with single-user HS-OFDM, the BER performance of multi-user DPDM-HS-OFDM is still superior to that of conventional single-user 4QAM-OFDM. Both single-user HS-OFDM and multi-user DPDM-HS-OFDM successfully achieve 2 Gbps/75 m data transmission, indicating that the DPDM-HS-OFDM scheme is of great importance in bandwidth-limited UWOC systems and has guiding significance to underwater wireless optical multiple access.

6.
J Texture Stud ; 55(2): e12830, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38581175

ABSTRACT

Freezing and blanching are essential processing steps in the production of frozen yellow peaches, inevitably leading to texture softening of the fruit. In this study, the synergistic mechanism of stem blanching, freezing conditions (-20°C, -40°C, -80°C, and liquid nitrogen [-173°C]), and sample sizes (cubes, slices, and half peaches) on macroscopic properties of texture, cellular structure, and ice crystal size distribution of frozen yellow peaches were measured. Blanching enhanced the heat and mass transfer rates in the subsequent freezing process. For nonblanched samples, cell membrane integrity was lost at any freezing rate, causing a significant reduction in textural quality. Slow freezing further exacerbated the texture softening, while the ultra-rapid freezing caused structural rupture. For blanched samples, the half peaches softened the most. The water holding capacity and fracture stress were not significantly affected by changes in freezing rate, although the ice crystal size distribution was more susceptible to the freezing rate. Peach cubes that had undergone blanching and rapid freezing (-80°C) experienced 4% less drip loss than nonblanched samples. However, blanching softened yellow peaches more than any freezing conditions. The implementation of uniform and shorter duration blanching, along with rapid freezing, has been proven to be more effective in preserving the texture of frozen yellow peaches. Optimization of the blanching process may be more important than increasing the freezing rate to improve the textural quality of frozen yellow peaches.


Subject(s)
Prunus persica , Steam , Freezing , Food Preservation , Ice
7.
Foods ; 13(6)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38540867

ABSTRACT

This study evaluated the effects of different drying techniques on the physicochemical properties of Pleurotus citrinopileatus Singer (P. citrinopileatus), focusing on the ergothioneine (EGT) contents. The P. citrinopileatus was subjected to natural ventilation drying (ND), freeze-drying (FD), and hot-air drying (HD). EGT was extracted using high-hydrostatic-pressure extraction (HHPE), and response surface methodology (RSM) was employed with four variables to optimize the extraction parameters. The crude EGT extract was purified by ultrafiltration and anion resin purification, and its antioxidant activity was investigated. The results showed that the ND method effectively disrupted mushroom tissues, promoting amino acid anabolism, thereby increasing the EGT content of mushrooms. Based on RSM, the optimum extracting conditions were pressure of 250 MPa, extraction time of 52 min, distilled water (dH2O) as the extraction solvent, and a 1:10 liquid-solid ratio, which yielded the highest EGT content of 4.03 ± 0.01 mg/g d.w. UPLC-Q-TOF-MSE was performed to assess the purity of the samples (purity: 86.34 ± 3.52%), and MS2 information of the main peak showed primary ions (m/z 230.1) and secondary cations (m/z 186.1050, m/z 127.0323) consistent with standard products. In addition, compared with ascorbic acid (VC), EGT showed strong free radical scavenging ability, especially for hydroxyl and ATBS radicals, at more than 5 mmol/L. These findings indicate that the extraction and purification methods used were optimal and suggest a possible synthetic path of EGT in P. citrinopileatus, which will help better explore the application of EGT.

8.
Carbohydr Polym ; 334: 122068, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38553197

ABSTRACT

The fabrication of highly elastic, fatigue-resistant and conductive hydrogels with antibacterial properties is highly desirable in the field of wearable devices. However, it remains challenging to simultaneously realize the above properties within one hydrogel without compromising excellent sensing ability. Herein, we fabricated a highly elastic, fatigue-resistant, conductive, antibacterial and cellulose nanocrystal (CNC) enhanced hydrogel as a sensitive strain sensor by the synergistic effect of biosynthesized selenium nanoparticles (BioSeNPs), MXene and nanocellulose. The structure and potential mechanism to generate biologically synthesized SeNPs (BioSeNPs) were systematically investigated, and the role of protease A (PrA) in enhancing the adsorption between proteins and SeNPs was demonstrated. Additionally, owing to the incorporation of BioSeNPs, CNC and MXene, the synthesized hydrogels showed high elasticity, excellent fatigue resistance and antibacterial properties. More importantly, the sensitivity of hydrogels determined by the gauge factor was as high as 6.24 when a high strain was applied (400-700 %). This study provides a new horizon to synthesize high-performance antibacterial and conductive hydrogels for soft electronics applications.


Subject(s)
Nanoparticles , Nitrites , Selenium , Transition Elements , Anti-Bacterial Agents/pharmacology , Cellulose/pharmacology , Electric Conductivity , Hydrogels/pharmacology
9.
Article in English | MEDLINE | ID: mdl-38230305

ABSTRACT

Background: Solar lentigines (SLs), serving as a prevalent characteristic of skin photoaging, present as cutaneous aberrant pigmentation. However, the underlying pathogenesis remains unclear and there is a dearth of reliable diagnostic biomarkers. Objective: The aim of this study was to identify diagnostic biomarkers for SLs and reveal its immunological features. Methods: In this study, gene expression profiling datasets (GSE192564 and GSE192565) of SLs were obtained from the GEO database. The GSE192564 was used as the training group for screening of differentially expressed genes (DEGs) and subsequent depth analysis. Gene set enrichment analysis (GSEA) was employed to explore the biological states associated with SLs. The weighted gene co-expression network analysis (WGCNA) was employed to identify the significant modules and hub genes. Then, the feature genes were further screened by the overlapping of hub genes and up-regulated differential genes. Subsequently, an artificial neural network was constructed for identifying SLs samples. The GSE192565 was used as the test group for validation of feature genes expression level and the model's classification performance. Furthermore, we conducted immune cell infiltration analysis to reveal the immune infiltration landscape of SLs. Results: The 9 feature genes were identified as diagnostic biomarkers for SLs in this study. And an artificial neural network based on diagnostic biomarkers was successfully constructed for identification of SLs. GSEA highlighted potential role of immune system in pathogenesis of SLs. SLs samples had a higher proportion of several immune cells, including activated CD8 T cell, dendritic cell, myeloid-derived suppressor cell and so on. And diagnostic biomarkers exhibited a strong relationship with the infiltration of most immune cells. Conclusion: Our study identified diagnostic biomarkers for SLs and explored its immunological features, enhancing the comprehension of its pathogenesis.

10.
Cancer Sci ; 114(12): 4717-4731, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37778742

ABSTRACT

To investigate the potential of the gut microbiome as a biomarker for predicting the early recurrence of HBV-related hepatocellular carcinoma (HCC), we enrolled 124 patients diagnosed with HBV-associated HCC and 82 HBV-related hepatitis, and 86 healthy volunteers in our study, collecting 292 stool samples for 16S rRNA sequencing and 35 tumor tissue samples for targeted metabolomics. We performed an integrated bioinformatics analysis of gut microbiome and tissue metabolome data to explore the gut microbial-liver metabolite axis associated with the early recurrence of HCC. We constructed a predictive model based on the gut microbiota and validated its efficacy in the temporal validation cohort. Dialister, Veillonella, the Eubacterium coprostanoligenes group, and Lactobacillus genera, as well as the Streptococcus pneumoniae and Bifidobacterium faecale species, were associated with an early recurrence of HCC. We also found that 23 metabolites, including acetic acid, glutamate, and arachidonic acid, were associated with the early recurrence of HCC. A comprehensive analysis of the gut microbiome and tissue metabolome revealed that the entry of gut microbe-derived acetic acid into the liver to supply energy for tumor growth and proliferation may be a potential mechanism for the recurrence of HCC mediated by gut microbe. We constructed a nomogram to predict early recurrence by combining differential microbial species and clinical indicators, achieving an AUC of 78.0%. Our study suggested that gut microbes may serve as effective biomarkers for predicting early recurrence of HCC, and the gut microbial-tumor metabolite axis may explain the potential mechanism by which gut microbes promote the early recurrence of HCC.


Subject(s)
Carcinoma, Hepatocellular , Gastrointestinal Microbiome , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Gastrointestinal Microbiome/genetics , Hepatitis B virus/genetics , Liver Neoplasms/pathology , RNA, Ribosomal, 16S/genetics , Biomarkers , Acetates
11.
Carbohydr Polym ; 312: 120827, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37059554

ABSTRACT

Stretchable and tough polysaccharide-based functional hydrogels have gained popularity for various applications. However, it still remains a great challenge to simultaneously own satisfactory stretchability and toughness, particularly when incorporating renewable xylan to offer sustainability. Herein, we describe a novel stretchable and tough xylan-based conductive hydrogel utilizing the natural feature of rosin derivative. The effect of different compositions on the mechanical properties and the physicochemical properties of corresponding xylan-based hydrogels were systematically investigated. Owing to the multiple non-covalent interactions among different components to dissipate energies and the strain-induced orientation of rosin derivative during the stretching, the highest tensile strength, strain, and toughness of xylan-based hydrogels could reach 0.34 MPa, 2098.4 %, and 3.79 ± 0.95 MJ/m3, respectively. Furthermore, by incorporating MXene as the conductive fillers, the strength and toughness of hydrogels were further enhanced to 0.51 MPa and 5.95 ± 1.19 MJ/m3. Finally, the synthesized xylan-based hydrogels were able to serve as a reliable and sensitive strain sensor to monitor the movements of human beings. This study provides new insights to develop stretchable and tough conductive xylan-based hydrogel, especially utilizing the natural feature of bio-based resources.


Subject(s)
Hydrogels , Xylans , Humans , Electric Conductivity , Movement
12.
Plant Physiol Biochem ; 195: 124-133, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36634507

ABSTRACT

After harvest, the metabolism of Gynura bicolor DC (G. bicolor) is vigorous, resulting in sugar scarcity and reactive oxygen species (ROS) accumulation, thus aggravating the quality deterioration. 1-Methylcyclopropene (1-MCP) shows crucial effect in alleviating the postharvest metabolism of vegetables and fruits. This research aimed to evaluate the effect of 1-MCP on ROS scavenging and sucrose metabolism in G. bicolor. In this research, G. bicolor was treated with 10 µL L-1 1-MCP for 12 h, followed by storage at 20 ± 2 °C and 90 ± 5% relative humidity in darkness for 7 days. During storage, the increases in the respiration rate, electrolytic leakage, weight loss rate, ROS levels, and membrane lipid oxidation were effectively inhibited by 1-MCP. Moreover, starch and hexose degradation was decreased in the 1-MCP group, as were sucrose synthesis and catabolism. Correlation analysis indicated that sugar starvation was associated with respiration, activities regulation of CAT, SOD, and enzymes involved in sucrose metabolism were associated with the levels of hydrogen peroxide at the early storage. In conclusion, 1-MCP delayed postharvest quality deterioration of G. bicolor by alleviating respiration, inducing oxidative stress to enhance ROS scavenging, and inhibiting sucrose metabolism.


Subject(s)
Cyclopropanes , Sugars , Cyclopropanes/pharmacology , Fruit/metabolism , Reactive Oxygen Species/metabolism , Sucrose/pharmacology , Sugars/pharmacology , Asteraceae/metabolism
14.
Int J Biol Macromol ; 227: 462-471, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36521712

ABSTRACT

Conductive hydrogels have attracted increasing attention for applications in wearable and flexible strain sensors. However, owing to their relatively weak strength, poor elasticity, and lack of anti-freezing ability, their applications have been limited. Herein, we present a skin-mimicking strategy to fabricate cellulose-enhanced, strong, elastic, highly conductive, and anti-freezing hydrogels. Self-assembly of cellulose to fabricate a cellulose skeleton is essential for realizing a skin-mimicking design. Furthermore, two methods, in situ polymerization and solvent replacement, were compared and investigated to incorporate conductive and anti-freezing components into hydrogels. Consequently, when the same ratio of glycerol and lithium chloride was used, the anti-freezing hydrogels prepared by in situ polymerization showed relatively higher strength (1.0 MPa), while the solvent-replaced hydrogels exhibited higher elastic recovery properties (94.6 %) and conductivity (4.5 S/m). In addition, their potential as strain sensors for monitoring human behavior was analyzed. Both hydrogels produced reliable signals and exhibited high sensitivity. This study provides a new horizon for the fabrication of strain sensors that can be applied in various environments.


Subject(s)
Cellulose , Hydrogels , Humans , Elasticity , Glycerol , Electric Conductivity , Solvents
15.
Liver Int ; 43(1): 221-233, 2023 01.
Article in English | MEDLINE | ID: mdl-36300678

ABSTRACT

BACKGROUND AND AIMS: Observational epidemiology studies suggested a relationship between the gut microbiome and primary liver cancer. However, the causal relationship remains unclear because of confounding factors and reverse causality. We aimed to explore the causal role of the gut microbiome in the development of primary liver cancer, including hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). METHODS: Mendelian randomization (MR) study was conducted using summary statistics from genome-wide association studies (GWAS) of the gut microbiome and liver cancer, and sequencing data from a case-control study validated the findings. A 5-cohort GWAS study in Germany (N = 8956) served as exposure, whilst the UK biobank GWAS study (N = 456 348) served as an outcome. The case-control study was conducted at the First Affiliated Hospital of Wenzhou Medical University from December 2018 to October 2020 and included 184 HCC patients, 63 ICC patients and 40 healthy controls. RESULTS: A total of 57 features were available for MR analysis, and protective causal associations were identified for Family_Ruminococcaceae (OR = 0.46 [95% CI, 0.26-0.82]; p = .009) and Genus_Porphyromonadaceae (OR = 0.59 [95% CI, 0.42-0.83]; p = .003) with HCC, and for Family_Porphyromonadaceae (OR = 0.36 [95% CI, 0.14-0.94]; p = .036) and Genus_Bacteroidetes (OR = 0.55 [95% CI, 0.34-0.90]; p = .017) with ICC respectively. The case-control study results showed that the healthy controls had a higher relative abundance of Family_Ruminococcaceae (p = .00033), Family_Porphyromonadaceae (p = .0055) and Genus_Bacteroidetes (p = .021) than the liver cancer patients. CONCLUSIONS: This study demonstrates that Ruminococcaceae, Porphyromonadaceae and Bacteroidetes are related to a reduced risk of liver cancer (HCC or ICC), suggesting potential significance for the prevention and control of liver cancer.


Subject(s)
Bile Duct Neoplasms , Carcinoma, Hepatocellular , Cholangiocarcinoma , Gastrointestinal Microbiome , Liver Neoplasms , Humans , Gastrointestinal Microbiome/genetics , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Case-Control Studies , Genome-Wide Association Study , Mendelian Randomization Analysis , Cholangiocarcinoma/genetics , Bile Ducts, Intrahepatic , Polymorphism, Single Nucleotide
16.
Cancers (Basel) ; 14(24)2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36551629

ABSTRACT

BACKGROUND: Although sarcopenia has been reported as a negative prognostic factor in patients with hepatocellular carcinoma (HCC), the lack of studies with a prospective design utilizing comprehensive sarcopenia assessment with composite endpoints is an important gap in understanding the impact of sarcopenia in patients with HCC. The aim of this study was to investigate the relationship between sarcopenia and postoperative 1-year mortality and health-related quality of life (HRQOL) based on sarcopenia assessment. METHODS: The study cohort, who received resection surgery for HCC between May 2020 and August 2021, was assessed for sarcopenia based on grip strength, the chair stand test, skeletal muscle mass, and gait speed. The primary outcome measures were 1-year mortality and HRQOL determined using the QLQ-C30 questionnaire. In addition, we collected hospital costs, postoperative hospital stays, complications, 30-day and 90-day mortality, and 90- and 180-day readmission rates. Univariate and multivariate linear regression analyses were conducted to examine factors associated with global health status. RESULTS: A total of 153 eligible patients were included in the cohort. One-year mortality was higher in patients with sarcopenia than in those without sarcopenia (p = 0.043). There was a correlation between sarcopenia and the surgical approach to global health status (p = 0.025) and diarrhea (p = 0.003). CONCLUSIONS: Preoperative sarcopenia reduces postoperative survival and health-related quality of life in patients with HCC.

17.
Foods ; 11(21)2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36360117

ABSTRACT

This study explored the Maillard reaction process during the glycation of soy protein isolate (SPI) with galacto-oligosaccharides (GOSs) under high-pressure homogenization (HPH) and its effects on the emulsifying properties of SPI. SPI-GOS glycation under moderate pressure (80 MPa) significantly inhibited the occurrence and extent of the Maillard reaction (p < 0.05), but homogenization pressures in the range of 80−140 MPa gradually promoted this reaction. HPH caused a decrease in the surface hydrophobicity of the glycated protein, an increase in the abundance of free sulfhydryl groups, unfolding of the protein molecular structure, and the formation of new covalent bonds (C=O, C=N). Additionally, the particle size of emulsions created with SPI-GOS conjugates was reduced under HPH, thus improving the emulsifying properties of SPI. A reduction in particle size (117 nm), enhanced zeta potential (−23 mV), and uniform droplet size were observed for the emulsion created with the SPI-GOS conjugate prepared at 120 MPa. The conformational changes in the glycated protein supported the improved emulsification function. All results were significantly different (p < 0.05). The study findings indicate that HPH provides a potential method for controlling glycation and improving the emulsifying properties of SPI.

18.
Carbohydr Polym ; 294: 119760, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35868784

ABSTRACT

With the development of wearable devices, the fabrication of strong, tough, antibacterial, and conductive hydrogels for sensor applications is necessary but remains challenging. Here, a skin-inspired biomimetic strategy integrated with in-situ reduction has been proposed. The self-assembly of cellulose to generate a cellulose skeleton was essential to realize the biomimetic structural design. Furthermore, in-situ generation of silver nanoparticles on the skeleton was easily achieved by a heating process. This process not only offered the excellent antibacterial property to hydrogels, but also improved the mechanical properties of hydrogels due to the elimination of negative effect of silver nanoparticles aggregation. The highest tensile strength and toughness could reach 2.0 MPa and 11.95 MJ/m3, respectively. Moreover, a high detection range (up to 1300%) and sensitivity (gauge factor = 4.4) was observed as the strain sensors. This study provides a new horizon to fabricate strong, tough and functional hydrogels for various applications in the future.


Subject(s)
Hydrogels , Metal Nanoparticles , Anti-Bacterial Agents/pharmacology , Biomimetics , Cellulose , Electric Conductivity , Hydrogels/chemistry , Silver
19.
Polymers (Basel) ; 12(3)2020 Mar 06.
Article in English | MEDLINE | ID: mdl-32155926

ABSTRACT

The aim of this study was to investigate the ultrasound-assisted alkaline extraction process and structural properties of hemicellulose from sugarcane bagasse pith. Response surface model (RSM) was established in order to optimize the extraction conditions for the highest hemicellulose yield based on the single-factor experiments. A maximum total hemicellulose yield of 23.05% was obtained under the optimal conditions of ultrasonic treatment time of 28 min, KOH mass concentration of 3.7%, and extraction temperature of 53 °C, and it evidently increased 3.24% compared without ultrasound-assisted extraction. The obtained hemicellulose was analyzed by Fourier transform infrared (FT-IR) spectroscopy. The monosaccharide composition and average molecular weight of hemicellulose were characterized by using ion chromatography (IC) and gel permeation chromatography (GPC). The results indicated that xylose was dominant component in water-soluble hemicellulose (WH, 69.05%) and alkali-soluble hemicellulose (AH, 85.83%), respectively. Furthermore, the monosaccharides(otherwise xylose) and uronic acids contents of WH were higher than that of AH. Weight average molecular weight of WH was 29923 g/mol, lower than that of AH (74872 g/mol). These results indicate that ultrasonic-assisted alkaline extraction is an efficient approach for the separation of hemicellulose from sugarcane bagasse pith.

20.
J Asian Nat Prod Res ; 22(2): 153-166, 2020 Feb.
Article in English | MEDLINE | ID: mdl-30507254

ABSTRACT

A series of novel biphenyl-furocoumarin derivatives were synthesized based on the nuclear structure of imperatorin and identified by IR, 1H NMR, 13C NMR and MS, and evaluated for their ability to relax vessel on isolated rat mesenteric artery, basilar artery and renal artery, respectively. The majority of compounds demonstrated potent vasodilatation, and compound 8e expressed the highest activity (EC50 = 0.56 µM) in MA. Compounds with fluorine at 2-position of 5-phenyl get better activity than others with chlorine or bromine, and the compounds containing a bulky structure had relatively low activity, such as 8c (EC50 = 22.39 µM) in MA. As a follow-up, 8e, 10e, and 8c were docked into L-calcium channel (PDB code: 3G43) to explain the difference in the activity of the compounds.


Subject(s)
Furocoumarins , Vasodilator Agents , Animals , Biphenyl Compounds , Molecular Structure , Rats , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...