Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Genome Biol ; 25(1): 34, 2024 01 24.
Article in English | MEDLINE | ID: mdl-38268000

ABSTRACT

BACKGROUND: Various laboratory-developed metabolomic methods lead to big challenges in inter-laboratory comparability and effective integration of diverse datasets. RESULTS: As part of the Quartet Project, we establish a publicly available suite of four metabolite reference materials derived from B lymphoblastoid cell lines from a family of parents and monozygotic twin daughters. We generate comprehensive LC-MS-based metabolomic data from the Quartet reference materials using targeted and untargeted strategies in different laboratories. The Quartet multi-sample-based signal-to-noise ratio enables objective assessment of the reliability of intra-batch and cross-batch metabolomics profiling in detecting intrinsic biological differences among the four groups of samples. Significant variations in the reliability of the metabolomics profiling are identified across laboratories. Importantly, ratio-based metabolomics profiling, by scaling the absolute values of a study sample relative to those of a common reference sample, enables cross-laboratory quantitative data integration. Thus, we construct the ratio-based high-confidence reference datasets between two reference samples, providing "ground truth" for inter-laboratory accuracy assessment, which enables objective evaluation of quantitative metabolomics profiling using various instruments and protocols. CONCLUSIONS: Our study provides the community with rich resources and best practices for inter-laboratory proficiency tests and data integration, ensuring reliability of large-scale and longitudinal metabolomic studies.


Subject(s)
Liquid Chromatography-Mass Spectrometry , Metabolomics , Humans , Reproducibility of Results , Cell Line , Twins, Monozygotic
2.
EBioMedicine ; 74: 103707, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34801968

ABSTRACT

BACKGROUND: Metabolic syndrome (MetS) is a cluster of multiple cardiometabolic risk factors that increase the risk of type 2 diabetes and cardiovascular diseases. Identifying novel biomarkers of MetS and their genetic associations could provide insights into the mechanisms of cardiometabolic diseases. METHODS: Potential MetS-associated metabolites were screened and internally validated by untargeted metabolomics analyses among 693 patients with MetS and 705 controls. External validation was conducted using two well-established targeted metabolomic methods among 149 patients with MetS and 253 controls. The genetic associations of metabolites were determined by linear regression using our previous genome-wide SNP data. Causal relationships were assessed using a one-sample Mendelian Randomization (MR) approach. FINDINGS: Nine metabolites were ultimately found to be associated with MetS or its components. Five metabolites, including LysoPC(14:0), LysoPC(15:0), propionyl carnitine, phenylalanine, and docosapentaenoic acid (DPA) were selected to construct a metabolite risk score (MRS), which was found to have a dose-response relationship with MetS and metabolic abnormalities. Moreover, MRS displayed a good ability to differentiate MetS and metabolic abnormalities. Three SNPs (rs11635491, rs7067822, and rs1952458) were associated with LysoPC(15:0). Two SNPs, rs1952458 and rs11635491 were found to be marginally correlated with several MetS components. MR analyses showed that a higher LysoPC(15:0) level was causally associated with the risk of overweight/obesity, dyslipidaemia, high uric acid, high insulin and high HOMA-IR. INTERPRETATION: We identified five metabolite biomarkers of MetS and three SNPs associated with LysoPC(15:0). MR analyses revealed that abnormal LysoPC metabolism may be causally linked the metabolic risk. FUNDING: This work was supported by grants from the National Key Research and Development Program of China (2017YFC0907004).


Subject(s)
Lysophosphatidylcholines/blood , Metabolic Syndrome/diagnosis , Metabolomics/methods , Polymorphism, Single Nucleotide , Case-Control Studies , Early Diagnosis , Female , Genome-Wide Association Study , Humans , Linear Models , Male , Mendelian Randomization Analysis , Metabolic Syndrome/genetics , Metabolic Syndrome/metabolism , Middle Aged
3.
Environ Microbiol ; 21(5): 1833-1846, 2019 05.
Article in English | MEDLINE | ID: mdl-30895699

ABSTRACT

Syntrophy is essential for the efficient conversion of organic carbon to methane in natural and constructed environments, but little is known about the enzymes involved in syntrophic carbon and electron flow. Syntrophus aciditrophicus strain SB syntrophically degrades benzoate and cyclohexane-1-carboxylate and catalyses the novel synthesis of benzoate and cyclohexane-1-carboxylate from crotonate. We used proteomic, biochemical and metabolomic approaches to determine what enzymes are used for fatty, aromatic and alicyclic acid degradation versus for benzoate and cyclohexane-1-carboxylate synthesis. Enzymes involved in the metabolism of cyclohex-1,5-diene carboxyl-CoA to acetyl-CoA were in high abundance in S. aciditrophicus cells grown in pure culture on crotonate and in coculture with Methanospirillum hungatei on crotonate, benzoate or cyclohexane-1-carboxylate. Incorporation of 13 C-atoms from 1-[13 C]-acetate into crotonate, benzoate and cyclohexane-1-carboxylate during growth on these different substrates showed that the pathways are reversible. A protein conduit for syntrophic reverse electron transfer from acyl-CoA intermediates to formate was detected. Ligases and membrane-bound pyrophosphatases make pyrophosphate needed for the synthesis of ATP by an acetyl-CoA synthetase. Syntrophus aciditrophicus, thus, uses a core set of enzymes that operates close to thermodynamic equilibrium to conserve energy in a novel and highly efficient manner.


Subject(s)
Acids/metabolism , Bacterial Proteins/metabolism , Deltaproteobacteria/metabolism , Acetates/metabolism , Acetyl Coenzyme A/metabolism , Acids/chemistry , Acyl Coenzyme A/metabolism , Bacterial Proteins/genetics , Benzoates/metabolism , Cyclohexanecarboxylic Acids/metabolism , Deltaproteobacteria/enzymology , Deltaproteobacteria/genetics , Electron Transport , Methane/metabolism , Methanospirillum/metabolism , Proteomics
4.
mBio ; 7(4)2016 08 16.
Article in English | MEDLINE | ID: mdl-27531911

ABSTRACT

UNLABELLED: Syntrophus aciditrophicus is a model syntrophic bacterium that degrades key intermediates in anaerobic decomposition, such as benzoate, cyclohexane-1-carboxylate, and certain fatty acids, to acetate when grown with hydrogen-/formate-consuming microorganisms. ATP formation coupled to acetate production is the main source for energy conservation by S. aciditrophicus However, the absence of homologs for phosphate acetyltransferase and acetate kinase in the genome of S. aciditrophicus leaves it unclear as to how ATP is formed, as most fermentative bacteria rely on these two enzymes to synthesize ATP from acetyl coenzyme A (CoA) and phosphate. Here, we combine transcriptomic, proteomic, metabolite, and enzymatic approaches to show that S. aciditrophicus uses AMP-forming, acetyl-CoA synthetase (Acs1) for ATP synthesis from acetyl-CoA. acs1 mRNA and Acs1 were abundant in transcriptomes and proteomes, respectively, of S. aciditrophicus grown in pure culture and coculture. Cell extracts of S. aciditrophicus had low or undetectable acetate kinase and phosphate acetyltransferase activities but had high acetyl-CoA synthetase activity under all growth conditions tested. Both Acs1 purified from S. aciditrophicus and recombinantly produced Acs1 catalyzed ATP and acetate formation from acetyl-CoA, AMP, and pyrophosphate. High pyrophosphate levels and a high AMP-to-ATP ratio (5.9 ± 1.4) in S. aciditrophicus cells support the operation of Acs1 in the acetate-forming direction. Thus, S. aciditrophicus has a unique approach to conserve energy involving pyrophosphate, AMP, acetyl-CoA, and an AMP-forming, acetyl-CoA synthetase. IMPORTANCE: Bacteria use two enzymes, phosphate acetyltransferase and acetate kinase, to make ATP from acetyl-CoA, while acetate-forming archaea use a single enzyme, an ADP-forming, acetyl-CoA synthetase, to synthesize ATP and acetate from acetyl-CoA. Syntrophus aciditrophicus apparently relies on a different approach to conserve energy during acetyl-CoA metabolism, as its genome does not have homologs to the genes for phosphate acetyltransferase and acetate kinase. Here, we show that S. aciditrophicus uses an alternative approach, an AMP-forming, acetyl-CoA synthetase, to make ATP from acetyl-CoA. AMP-forming, acetyl-CoA synthetases were previously thought to function only in the activation of acetate to acetyl-CoA.


Subject(s)
Acetyl Coenzyme A/metabolism , Adenosine Triphosphate/metabolism , Coenzyme A Ligases/metabolism , Deltaproteobacteria/enzymology , Deltaproteobacteria/metabolism , Diphosphates/metabolism , Acetates/metabolism , Gene Expression Profiling , Metabolome , Proteome/analysis
5.
J Proteomics ; 99: 84-100, 2014 Mar 17.
Article in English | MEDLINE | ID: mdl-24487036

ABSTRACT

Physiological and proteomic responses of Sesuvium portulacastrum leaves under salinity were investigated. Different from glycophytes, this halophyte had optimal growth at 200-300mM NaCl and accumulated more starch grains in chloroplasts under high salinity. Increased contents of soluble sugars, proline, and Na(+) were observed upon salinity. X-ray microanalysis revealed that Na(+) was mainly compartmentalized into cell vacuole. Quantitative proteomics produced 96 salt responsive proteins, and the majority was chloroplast-located proteins. Gene ontology analysis revealed that proteins involved in ion binding, proton transport, photosynthesis and ATP synthesis were overrepresented. The expressions of a Na(+)/H(+) antiporter and several ATP synthase subunits were activated upon high salinity. ATP hydrolysis assay demonstrated that V-ATPase activity at tonoplast was dramatically increased upon NaCl whereas vacuolar H(+)-pyrophosphatase and plasma membrane P-ATPase activities were not increased, which indicated that sodium compartmentalization was mainly performed by enhancing V-ATPase activity rather than P-ATPase and H(+)-pyrophosphatase. Accumulation of soluble sugars as well as sodium compartmentalization maintained the osmotic balance between vacuole and cytoplasm, which finally established ionic homeostasis in saline cells in true halophytes. BIOLOGICAL SIGNIFICANCE: Physiological and proteomic analyses of S. portulacastrum leaves under different salinities were investigated. This true halophyte accumulated more soluble sugars, starch, proline and Na(+) under high salinity. Differential proteomics produced 96 salt responsive proteins and the majority was involved in ion binding, proton transport, photosynthesis, and ATP synthesis. A Na(+)/H(+) antiporter and several ATP synthase subunits were induced upon high salinity. ATP hydrolysis assay demonstrated that V-ATPase activity at tonoplast was dramatically increased whereas vacuolar H(+)-pyrophosphatase and plasma membrane ATPase activities were stable upon NaCl. These findings demonstrated that the increased Na(+) was compartmentalized into vacuole by enhancing V-ATPase activity rather than H(+)-ATPase.


Subject(s)
Aizoaceae/enzymology , Chloroplast Proteins/biosynthesis , Chloroplasts/enzymology , Gene Expression Regulation, Enzymologic/physiology , Gene Expression Regulation, Plant/physiology , Osmotic Pressure/physiology , Vacuolar Proton-Translocating ATPases/biosynthesis , Plant Leaves , Salinity
6.
Trop Plant Biol ; 6(2-3)2013 Sep 01.
Article in English | MEDLINE | ID: mdl-24363819

ABSTRACT

Single-seeded fruit of the sacred lotus Nelumbo nucifera Gaertn var. China Antique from NE China have viability as long as ~1300 years determined by direct radiocarbon-dating, having a germination rate of 84%. The pericarp, a fruit tissue that encloses the single seeds of Nelumbo, is considered one of the major factors that contribute to fruit longevity. Proteins that are heat stable and have protective function may be equally important to seed viability. We show proteins of Nelumbo fruit that are able to withstand heating, 31% of which remained soluble in the 110°C-treated embryo-axis of a 549-yr-old fruit and 76% retained fluidity in its cotyledons. Genome of Nelumbo is published. The amino-acid sequences of 11 "thermal proteins" (soluble at 100°C) of modern Nelumbo embryo-axes and cotyledons, identified by mass spectrometry, Western blot and bioassay, are assembled and aligned with those of an archaeal-hyperthermophile Methancaldococcus jannaschii (Mj; an anaerobic methanogen having a growth optimum of 85°C) and with five mesophile angiosperms. These thermal proteins have roles in protection and repair under stress. More than half of the Nelumbo thermal proteins (55%) are present in the archaean Mj, indicating their long-term durability and history. One Nelumbo protein-repair enzyme exhibits activity at 100°C, having a higher heat-tolerance than that of Arabidopsis. A list of 30 sequenced but unassembled thermal proteins of Nelumbo is supplemented.

7.
Quant Imaging Med Surg ; 2(3): 188-206, 2012 Sep.
Article in English | MEDLINE | ID: mdl-23256080

ABSTRACT

Medical imaging currently plays a crucial role throughout the entire clinical applications from medical scientific research to diagnostics and treatment planning. However, medical imaging procedures are often computationally demanding due to the large three-dimensional (3D) medical datasets to process in practical clinical applications. With the rapidly enhancing performances of graphics processors, improved programming support, and excellent price-to-performance ratio, the graphics processing unit (GPU) has emerged as a competitive parallel computing platform for computationally expensive and demanding tasks in a wide range of medical image applications. The major purpose of this survey is to provide a comprehensive reference source for the starters or researchers involved in GPU-based medical image processing. Within this survey, the continuous advancement of GPU computing is reviewed and the existing traditional applications in three areas of medical image processing, namely, segmentation, registration and visualization, are surveyed. The potential advantages and associated challenges of current GPU-based medical imaging are also discussed to inspire future applications in medicine.

8.
Mol Cell Proteomics ; 11(12): 1640-51, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22942356

ABSTRACT

Receptor interacting protein 3 (RIP3) is a protein kinase that plays a key role in programmed necrosis. Despite the importance of RIP3-dependent necrosis in many pathological processes, current knowledge on the function of RIP3 is very limited. Here we present the results of a proteome-wide analysis of RIP3-regulated phosphorylation sites using cells from wildtype (RIP3(+/+)) and RIP3 knockout (RIP3(-/-)) mice. Because the activation of RIP3 requires stimulation by certain extracellular stimuli such as ligands of death receptors or Toll-like receptors, we compared the phosphorylation sites of lipopolysaccharide (LPS)-treated peritoneal macrophages from RIP3(+/+) and RIP3(-/-) mice and the phosphorylation sites of tumor necrosis factor (TNF)-treated RIP3(+/+) and RIP3(-/-) mouse embryonic fibroblast (MEF) cells. Stable isotope labeling by amino acids in cell culture and spike-in stable isotope labeling by amino acids in cell culture were used in the analyses of the MEFs and macrophages, respectively. Proteomic analyses using stable isotope labeling by amino acids in cell culture coupled with immobilized metal affinity chromatography-hydrophilic interaction liquid chromatography fractionation and nanoLC MS/MS identified 14,057 phosphopeptides in 4306 proteins from the macrophages and 4732 phosphopeptides in 1785 proteins from the MEFs. Analysis of amino acid sequence motifs among the phosphopeptides identified a potential motif of RIP3 phosphorylation. Among the phosphopeptides identified, 73 were found exclusively in RIP3(+/+) macrophages, 121 were detected exclusively from RIP3(+/+) MEFs, 286 phosphopeptides were induced more in RIP3(+/+) macrophages than in RIP3(-/-) macrophages and 26 phosphopeptides had higher induction in RIP3(+/+) MEFs than in RIP3(-/-) cells. Many of the RIP3 regulated phosphoproteins from the macrophages and MEF cells are functionally associated with the cell cycle; the rest, however, appear to have diverse functions in that a number of metabolism related proteins were phosphorylated in macrophages and development related phosphoproteins were induced in MEFs. The results of our phosphoproteomic analysis suggest that RIP3 might function beyond necrosis and that cell type specific function of RIP3 exists.


Subject(s)
Macrophages, Peritoneal/metabolism , Necrosis/metabolism , Phosphopeptides/analysis , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Amino Acid Motifs , Amino Acid Sequence , Amino Acids , Animals , Cell Cycle , Cell Line , Chromatography, Affinity , Chromatography, Liquid , Fibroblasts/drug effects , Fibroblasts/metabolism , Isotope Labeling , Lipopolysaccharides , Macrophages, Peritoneal/drug effects , Mice , Mice, Knockout , Phosphorylation , Proteome/analysis , Proteomics/methods , Sequence Analysis, Protein , Signal Transduction , Staining and Labeling , Tumor Necrosis Factor-alpha/pharmacology
9.
PLoS One ; 7(5): e37053, 2012.
Article in English | MEDLINE | ID: mdl-22615887

ABSTRACT

BACKGROUND: Proteomic approaches based on mass spectrometry have been recently used in archaeological and art researches, generating promising results for protein identification. Little information is known about eastward spread and eastern limits of prehistoric milking in eastern Eurasia. METHODOLOGY/PRINCIPAL FINDING: In this paper, an ancient visible food remain from Subeixi Cemeteries (cal. 500 to 300 years BC) of the Turpan Basin in Xinjiang, China, preliminarily determined containing 0.432 mg/kg cattle casein with ELISA, was analyzed by using an improved method based on liquid chromatography (LC) coupled with MALDI-TOF/TOF-MS to further identify protein origin. The specific sequence of bovine casein and the homology sequence of goat/sheep casein were identified. CONCLUSIONS/SIGNIFICANCE: The existence of milk component in ancient food implies goat/sheep and cattle milking in ancient Subeixi region, the furthest eastern location of prehistoric milking in the Old World up to date. It is envisioned that this work provides a new approach for ancient residue analysis and other archaeometry field.


Subject(s)
Milk Proteins/analysis , Milk Proteins/chemistry , Milk/chemistry , Animals , Archaeology/methods , Caseins/chemistry , Cattle , Chromatography, Liquid/methods , Food , Food Analysis/methods , Fossils , History, Ancient , Proteomics/methods , Spectrometry, Mass, Electrospray Ionization/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
10.
Int J Parasitol ; 41(13-14): 1421-34, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22079833

ABSTRACT

The human pathogen Trichomonas vaginalis lacks conventional mitochondria and instead contains divergent mitochondrial-related organelles. These double-membrane bound organelles, called hydrogenosomes, produce molecular hydrogen. Phylogenetic and biochemical analyses of hydrogenosomes indicate a common origin with mitochondria; however identification of hydrogenosomal proteins and studies on its metabolism have been limited. Here we provide a detailed proteomic analysis of the T. vaginalis hydrogenosome. The proteome of purified hydrogenosomes consists of 569 proteins, a number substantially lower than the 1,000-1,500 proteins reported for fungal and animal mitochondrial proteomes, yet considerably higher than proteins assigned to mitosomes. Pathways common to and distinct from both mitochondria and mitosomes were revealed by the hydrogenosome proteome. Proteins known to function in amino acid and energy metabolism, Fe-S cluster assembly, flavin-mediated catalysis, oxygen stress response, membrane translocation, chaperonin functions, proteolytic processing and ATP hydrolysis account for ∼30% of the hydrogenosome proteome. Of the 569 proteins in the hydrogenosome proteome, many appear to be associated with the external surface of hydrogenosomes, including large numbers of GTPases and ribosomal proteins. Glycolytic proteins were also found to be associated with the hydrogenosome proteome, similar to that previously observed for mitochondrial proteomes. Approximately 18% of the hydrogenosomal proteome is composed of hypothetical proteins of unknown function, predictive of multiple activities and properties yet to be uncovered for these highly adapted organelles.


Subject(s)
Mitochondria/metabolism , Organelles/metabolism , Proteome/metabolism , Protozoan Proteins/metabolism , Trichomonas vaginalis/metabolism , Humans , Mass Spectrometry , Mitochondria/chemistry , Mitochondria/genetics , Organelles/chemistry , Organelles/genetics , Phylogeny , Proteome/chemistry , Proteome/genetics , Proteomics , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Trichomonas vaginalis/chemistry , Trichomonas vaginalis/classification , Trichomonas vaginalis/genetics
11.
Int J Comput Assist Radiol Surg ; 6(2): 187-99, 2011 Mar.
Article in English | MEDLINE | ID: mdl-20589441

ABSTRACT

PURPOSE: To accelerate the simultaneous algebraic reconstruction technique (SART) with motion compensation for speedy and quality computed tomography reconstruction by exploiting CUDA-enabled GPU. METHODS: Two core techniques are proposed to fit SART into the CUDA architecture: (1) a ray-driven projection along with hardware trilinear interpolation, and (2) a voxel-driven back-projection that can avoid redundant computation by combining CUDA shared memory. We utilize the independence of each ray and voxel on both techniques to design CUDA kernel to represent a ray in the projection and a voxel in the back-projection respectively. Thus, significant parallelization and performance boost can be achieved. For motion compensation, we rectify each ray's direction during the projection and back-projection stages based on a known motion vector field. RESULTS: Extensive experiments demonstrate the proposed techniques can provide faster reconstruction without compromising image quality. The process rate is nearly 100 projections s (-1), and it is about 150 times faster than a CPU-based SART. The reconstructed image is compared against ground truth visually and quantitatively by peak signal-to-noise ratio (PSNR) and line profiles. We further evaluate the reconstruction quality using quantitative metrics such as signal-to-noise ratio (SNR) and mean-square-error (MSE). All these reveal that satisfactory results are achieved. The effects of major parameters such as ray sampling interval and relaxation parameter are also investigated by a series of experiments. A simulated dataset is used for testing the effectiveness of our motion compensation technique. The results demonstrate our reconstructed volume can eliminate undesirable artifacts like blurring. CONCLUSION: Our proposed method has potential to realize instantaneous presentation of 3D CT volume to physicians once the projection data are acquired.


Subject(s)
Computer Graphics , Radiographic Image Interpretation, Computer-Assisted/methods , Tomography, X-Ray Computed , Algorithms , Artifacts , Humans , Image Enhancement/methods , Imaging, Three-Dimensional , Mathematics , Motion , Software , Time Factors
12.
PLoS One ; 5(11): e15096, 2010 Nov 29.
Article in English | MEDLINE | ID: mdl-21124746

ABSTRACT

Different glycoforms of some proteins have been identified as differential spots for certain diseases in 2-DE, indicating disease-related glycosylation changes. It is routine to determine the site-specific glycosylation of nonsialylated N-glycoproteins from a single gel spot, but some obstacles still exist in analyzing sialylated glycoproteins due to the lability and higher detection limit of acid glycans in MALDI-TOF/TOF analysis. Thus, we present an improved protocol here. Tryptic glycopeptides were separated and subjected to MALDI-TOF/TOF analysis, resulting in the identification of site-specific glycosylation of high-intensity glycopeptides. Sequential deglycosylation and desialylation were used to improve the identification of glycosylation sites and desialylated glycans. The site-specific glycosylation of large glycopeptides and low-intensity glycopeptides was deduced based on the masses of glycopeptides, deglycosylated peptides and desialylated glycans. By applying it to 2-DE separated human serum, the difference of N-glycosylation was successfully determined for α1-antitrypsin between different gel spots.


Subject(s)
Electrophoresis, Gel, Two-Dimensional/methods , Glycopeptides/analysis , Glycoproteins/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Binding Sites , Glycosylation , Humans , Polysaccharides/metabolism , Reproducibility of Results , Transferrin/metabolism , alpha 1-Antitrypsin/metabolism
13.
Int J Mol Sci ; 11(9): 3106-21, 2010 Sep 02.
Article in English | MEDLINE | ID: mdl-20957082

ABSTRACT

Lymph node involvement is the most important predictor of survival rates in patients with oral squamous cell carcinoma (OSCC). A biomarker that can indicate lymph node metastasis would be valuable to classify patients with OSCC for optimal treatment. In this study, we have performed a serum proteomic analysis of OSCC using 2-D gel electrophoresis and liquid chromatography/tandem mass spectrometry. One of the down-regulated proteins in OSCC was identified as tetranectin, which is a protein encoded by the CLEC3B gene (C-type lectin domain family 3, member B). We further tested the protein level in serum and saliva from patients with lymph-node metastatic and primary OSCC. Tetranectin was found significantly under-expressed in both serum and saliva of metastatic OSCC compared to primary OSCC. Our results suggest that serum or saliva tetranectin may serve as a potential biomarker for metastatic OSCC. Other candidate serum biomarkers for OSCC included superoxide dismutase, ficolin 2, CD-5 antigen-like protein, RalA binding protein 1, plasma retinol-binding protein and transthyretin. Their clinical utility for OSCC detection remains to be further tested in cancer patients.


Subject(s)
Biomarkers, Tumor/blood , Carcinoma, Squamous Cell/diagnosis , Lectins, C-Type/blood , Mouth Neoplasms/diagnosis , Biomarkers, Tumor/analysis , Case-Control Studies , Humans , Lectins, C-Type/analysis , Lymphatic Metastasis/diagnosis , Saliva/chemistry
14.
J Proteome Res ; 9(12): 6561-77, 2010 Dec 03.
Article in English | MEDLINE | ID: mdl-20923197

ABSTRACT

Drought is one of the most severe limitations to plant growth and productivity. Resurrection plants have evolved a unique capability to tolerate desiccation in vegetative tissues. Fern-ally Selaginella tamariscina (Beauv.) is one of the most primitive vascular resurrection plants, which can survive a desiccated state and recover when water becomes available. To better understand the mechanism of desiccation tolerance, we have applied physiological and proteomic analysis. Samples of S. tamariscina were water-deprived for up to seven days followed by 12 h of rewatering. Our results showed that endogenous abscisic acid (ABA) increased to regulate dehydration-responsive genes/proteins and physiological processes. In the course of dehydration, the contents of osmolytes represented by soluble sugars and proline were increased to maintain cell structure integrity. The activities of four antioxidant enzymes (superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and glutathione reductase (GR)) also increased. In contrast, both the rate of photosynthesis and the chlorophyll content decreased, and plasma membrane integrity was lost. We identified 138 desiccation-responsive two-dimensional electrophoresis (2-DE) spots, representing 103 unique proteins. Hierarchical clustering analysis revealed that 83% of the proteins were down-regulated upon dehydration. They were mainly involved in photosynthesis, carbohydrate and energy metabolism, stress and defense, protein metabolism, signaling, membrane/transport, cell structure, and cell division. The dynamic expression changes of the desiccation-responsive proteins provide strong evidence that cell structure modification, photosynthesis reduction, antioxidant system activation, and protein post-transcriptional/translational modifications are essential to the poikilochlorophyllous fern-ally S. tamariscina in response to dehydration. In addition, our comparative analysis of dehydration-responsive proteins in vegetative tissues from 19 desiccation tolerant and nontolerant plant species suggests that resurrection S. tamariscina has developed a specific desiccation tolerant mechanism. To our knowledge, this study constitutes the first detailed investigation of the protein complement in fern/fern-allies.


Subject(s)
Plant Proteins/metabolism , Proteome/metabolism , Selaginellaceae/metabolism , Water/metabolism , Abscisic Acid/metabolism , Adaptation, Physiological , Catalase/metabolism , Chlorophyll/metabolism , Electrophoresis, Gel, Two-Dimensional , Glutathione Reductase/metabolism , Osmotic Pressure/drug effects , Peroxidase/metabolism , Photosynthesis/drug effects , Plant Proteins/analysis , Proteome/analysis , Proteomics/methods , Selaginellaceae/drug effects , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Stress, Physiological , Superoxide Dismutase/metabolism , Time Factors , Water/pharmacology
15.
J Proteome Res ; 9(6): 3319-27, 2010 Jun 04.
Article in English | MEDLINE | ID: mdl-20420461

ABSTRACT

Stable isotope dilution-multiple reaction monitoring-mass spectrometry (SID-MRM-MS), which is an alternative to immunoassay methods such as ELISA and Western blotting, has been used to alleviate the bottlenecks of high-throughput verification of biomarker candidates recently. However, the inconvenience and high isotope consumption required to obtain stably labeled peptide impedes the broad application of this method. In our study, the (18)O-labeling method was introduced to generate stable isotope-labeled peptides instead of the Fmoc chemical synthesis and Qconcat recombinant protein synthesis methods. To make (18)O-labeling suitable for absolute quantification, we have added the following procedures: (1) RapiGest SF and microwave heating were added to increase the labeling efficiency; (2) trypsin was deactivated completely by chemical modification using tris(2-carboxyethyl)phosphine (TCEP) and iodoacetamide (IAA) to prevent back-exchange of (18)O to (16)O, and (3) MRM parameters were optimized to maximize specificity and better distinguish between (18)O-labeled and unlabeled peptides. As a result, the (18)O-labeled peptides can be prepared in less than 1 h with satisfactory efficiency (>97%) and remained stable for 1 week, compared to traditional protocols that require 5 h for labeling with poor stability. Excellent separation of (18)O-labeled and unlabeled peptides was achieved by the MRM-MS spectrum. Finally, through the combined improvement in (18)O-labeling with multiple reaction monitoring, an absolute quantification strategy was developed to quantitatively verify hepatocellular carcinoma-related biomarker candidates, namely, vitronectin and clusterin, in undepleted serum samples. Sample preparation and capillary-HPLC analysis were optimized for high-throughput applications. The reliability of this strategy was further evaluated by method validation, with accuracy (%RE) and precision (%RSD) of less than 20% and good linearity (r(2) > 0.99), and clinical validation, which were consistent with previously reported results. In summary, our strategy can promote broader application of SID-MRM-MS for biomarkers from discovery to verification regarding the significant advantages of the convenient and flexible generation of internal standards, the reduction in the sample labeling steps, and the simple transition.


Subject(s)
Biomarkers, Tumor/blood , Isotope Labeling/methods , Liver Neoplasms/blood , Oxygen Isotopes/chemistry , Amino Acid Sequence , Biomarkers, Tumor/chemistry , Chromatography, High Pressure Liquid , Clusterin/blood , Clusterin/chemistry , Humans , Linear Models , Molecular Sequence Data , Oxygen Isotopes/metabolism , Reference Standards , Reproducibility of Results , Sensitivity and Specificity , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Vitronectin/blood , Vitronectin/chemistry
16.
Proteomics Clin Appl ; 3(1): 116-134, 2009 Jan 01.
Article in English | MEDLINE | ID: mdl-19898684

ABSTRACT

The proteome of human salivary fluid has the potential to open new doors for disease biomarker discovery. A recent study to comprehensively identify and catalog the human ductal salivary proteome led to the compilation of 1166 proteins. The protein complexity of both saliva and plasma is large, suggesting that a comparison of these two proteomes will provide valuable insight into their physiological significance and an understanding of the unique and overlapping disease diagnostic potential that each fluid provides. To create a more comprehensive catalog of human salivary proteins, we have first compiled an extensive list of proteins from whole saliva (WS) identified through MS experiments. The WS list is thereafter combined with the proteins identified from the ductal parotid, and submandibular and sublingual (parotid/SMSL) salivas. In parallel, a core dataset of the human plasma proteome with 3020 protein identifications was recently released. A total of 1939 nonredundant salivary proteins were compiled from a total of 19 474 unique peptide sequences identified from whole and ductal salivas; 740 out of the total 1939 salivary proteins were identified in both whole and ductal saliva. A total of 597 of the salivary proteins have been observed in plasma. Gene ontology (GO) analysis showed similarities in the distributions of the saliva and plasma proteomes with regard to cellular localization, biological processes, and molecular function, but revealed differences which may be related to the different physiological functions of saliva and plasma. The comprehensive catalog of the salivary proteome and its comparison to the plasma proteome provides insights useful for future study, such as exploration of potential biomarkers for disease diagnostics.

17.
PLoS One ; 4(6): e5905, 2009 Jun 16.
Article in English | MEDLINE | ID: mdl-19529778

ABSTRACT

SUMO is a protein modifier that is vital for multicellular development. Here we present the first system-wide analysis, combining multiple approaches, to correlate the sumoylated proteome (SUMO-ome) in a multicellular organism with the developmental roles of SUMO. Using mass-spectrometry-based protein identification, we found over 140 largely novel SUMO conjugates in the early Drosophila embryo. Enriched functional groups include proteins involved in Ras signaling, cell cycle, and pattern formation. In support of the functional significance of these findings, sumo germline clone embryos exhibited phenotypes indicative of defects in these same three processes. Our cell culture and immunolocalization studies further substantiate roles for SUMO in Ras signaling and cell cycle regulation. For example, we found that SUMO is required for efficient Ras-mediated MAP kinase activation upstream or at the level of Ras activation. We further found that SUMO is dynamically localized during mitosis to the condensed chromosomes, and later also to the midbody. Polo kinase, a SUMO substrate found in our screen, partially colocalizes with SUMO at both sites. These studies show that SUMO coordinates multiple regulatory processes during oogenesis and early embryogenesis. In addition, our database of sumoylated proteins provides a valuable resource for those studying the roles of SUMO in development.


Subject(s)
Drosophila melanogaster/embryology , Drosophila melanogaster/physiology , Genomics/methods , Proteomics/methods , Small Ubiquitin-Related Modifier Proteins/genetics , Small Ubiquitin-Related Modifier Proteins/physiology , ras Proteins/metabolism , Animals , Body Patterning , Cell Cycle , Crosses, Genetic , MAP Kinase Signaling System , Mass Spectrometry/methods , Microscopy, Fluorescence/methods , Mitosis , Models, Biological , Signal Transduction , Small Ubiquitin-Related Modifier Proteins/metabolism
18.
J Chromatogr B Analyt Technol Biomed Life Sci ; 877(16-17): 1657-66, 2009 Jun 01.
Article in English | MEDLINE | ID: mdl-19394901

ABSTRACT

In this study, a label-free relative quantification strategy was developed for quantifying low-abundance glycoproteins in human serum. It included three steps: (1) immunodepletion of 12 high-abundance proteins, (2) enrichment of low-abundance glycoproteins by multi-lectin column, (3) relative quantification of them between different samples by micrOTOF-Q. We also evaluated the specificity and efficiency of immunodepletion, the accuracy of protein quantification and the possible influence of immunodepletion, glycoprotein enrichment, trypsin digestion and peptide ionization on quantification. In conclusion, the relative quantification method can be effectively applied to the screening of low-abundance biomarkers.


Subject(s)
Glycoproteins/blood , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods , Humans
19.
J Environ Sci (China) ; 21(12): 1673-8, 2009.
Article in English | MEDLINE | ID: mdl-20131597

ABSTRACT

A Gram-negative, chromium(VI) tolerant and reductive strain CTS-325, isolated from a Chinese chromate plant, was identified as Ochrobactrum anthropi based on its biochemical properties and 16S rDNA sequence analysis. It was able to tolerate up to 10 mmol/L Cr(VI) and completely reduce 1 mmol/L Cr(VI) to Cr(III) within 48 h. When the strain CTS-325 was induced with Cr(VI), a protein increased significantly in the whole cell proteins. Liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis revealed that this protein was a superoxide dismutase (SOD) homology. The measured superoxide dismutase activity was 2694 U/mg after three steps of purification. The SOD catalyzes the dismutation of the superoxide anion (O2*-) into hydrogen peroxide and molecular oxygen. This protein is considered to be one of the most important anti-oxidative enzymes for O. anthropi as it allows the bacterium to survive high oxygen stress environments, such as the environment produced during the reduction process of Cr(VI).


Subject(s)
Bacterial Proteins/metabolism , Chromium/metabolism , Ochrobactrum anthropi/enzymology , Superoxide Dismutase/metabolism , Amino Acid Sequence , Bacterial Proteins/genetics , Chromatography, Liquid , Electrophoresis, Polyacrylamide Gel , Mass Spectrometry , Molecular Sequence Data , Ochrobactrum anthropi/genetics , Ochrobactrum anthropi/isolation & purification , Sequence Alignment , Sequence Homology, Amino Acid , Superoxide Dismutase/genetics , Superoxide Dismutase/isolation & purification
20.
Clin Proteomics ; 5(1): 52-68, 2009 Mar 01.
Article in English | MEDLINE | ID: mdl-20161393

ABSTRACT

Glycosylation is important for a number of biological processes and is perhaps the most abundant and complicated of the known post-translational modifications found on proteins. This work combines two-dimensional polyacrylamide gel electrophoresis (2-DE) and lectin blotting to map the salivary glycome, and mass spectrometry to identity the proteins that are associated with the glycome map. A panel of 15 lectins that recognize six sugar-specific categories was used to visualize the type and extent of glycosylation in saliva from two healthy male individuals. Lectin blots were compared to 2-D gels stained either with Sypro Ruby (protein stain) or Pro-Q Emerald 488 (glycoprotein stain). Each lectin shows a distinct pattern, even those belonging to the same sugar-specific category. In addition, the glycosylation profiles generated from the lectin blots show that most of the salivary proteins are glycosylated and that the pattern is more widespread than is demonstrated by the glycoprotein stained gel. Finally, the co-reactivity between two lectins was measured to determine the glycan structures that are most and least often associated with one another along with the population variation of the lectin reactivity for 66 individuals.

SELECTION OF CITATIONS
SEARCH DETAIL
...