Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 7(4): 3483-3490, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35128257

ABSTRACT

Unsaturated polyester resin (UPR) with good chemical resistance, excellent mechanical properties, and formaldehyde-free shows great potentials in the wood industry. In this study, the mechanical strength, thermostability, dynamic thermomechanical property, and interfacial bonding of bamboo particle boards (BPBs) made from UPR adhesives with toluene diisocyanate (TDI) as the coupling agent were explored. The results showed that covalent bonds were formed among TDI, bamboo particles, and UPR, which could significantly enhance the mechanical strength. The internal bonding strength, modulus of elasticity, and modulus of rupture of treated BPBs were 1.36, 3010, and 19.6 MPa with the increment of 1250, 514, and 833%, respectively, compared to the control samples. Also, the thickness swelling rate of the BPB was 4.6%, much lower than that of the control, with a decrease of 92%. The thermostability of the treated BPB was also improved. As a result, the BPB using UPR as the adhesive and TDI as the coupling agent shows better usability, higher efficiency, and excellent mechanical strength.

2.
RSC Adv ; 11(54): 34416-34423, 2021 Oct 18.
Article in English | MEDLINE | ID: mdl-35497308

ABSTRACT

Aluminum phosphate (AP) shows great potential to replace formaldehyde-based adhesives in the wood industry, except for its weak hygroscopic resistance and low wet bonding strength. This study chose PVA as an AP modifier to prepare a PVA-AP organic-inorganic hybrid adhesive (PAP). The preparation, bonding mechanism and heat resistant property of PAP were studied by using X-ray photoelectron spectroscopy (XPS), Fourier transforms infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetry-differential scanning calorimetry (TG-DSC), nuclear magnetic resonance (NMR) and scanning electron microscopy (SEM). The result showed that covalent bonds between PVA and AP were built. The mechanical properties of PAP improved remarkably; the dry and wet bonding strength are 2.28 and 0.79 MPa with 15.2% and 690% increment, respectively, compared to the control samples. The thermostabilities of PAP and plywood samples were improved. In conclusion, PVA could effectively improve the hygroscopic resistance and low wet bonding strength of AP adhesives.

3.
ACS Appl Mater Interfaces ; 12(17): 19511-19518, 2020 Apr 29.
Article in English | MEDLINE | ID: mdl-32271530

ABSTRACT

Solar steam generation as a promising solar energy conversion technology has attracted considerable interest in achieving seawater desalination and water purification. Although wood with fast water transportation and excellent heat localization has drawn particular interest in regard to its application for solar steam generation, challenges still remain in terms of its complicated processing techniques and relatively low efficiency. Here, we propose a facile, cost-efficient, and scalable brushing method to prepare an aluminophosphate-treated wood (Wood@AlP) solar steam generation device. The aluminophosphate compound deposited on the wood surface can not only be considered as the Lewis acid catalyst capable of accelerating the formation of the carbon layer but also provide an aluminophosphate layer with a hierarchical porous structure, which is beneficial for broad solar absorption and vapor escape. On the other hand, benefiting from the natural hydrophilicity, low thermal conductivity, and excellent water transportation of wood, the obtained Wood@AlP device can float on seawater and exhibit a high solar thermal efficiency of 90.8% with a net evaporation rate of 1.423 kg m-2 h-1 under 1 sun illumination.

4.
ACS Omega ; 5(15): 8784-8793, 2020 Apr 21.
Article in English | MEDLINE | ID: mdl-32337440

ABSTRACT

Fungi play a considerable role in the deterioration of lignocellulose materials, as their activities either affect the esthetic properties or lead to decay of the host materials. The new generation of organic-inorganic preservatives, which are copper-based but chrome- and arsenic-free, is a subject of many research works. Mildew fungus prevention, treatment of affected materials, and their successive conservation are essential to the woodworkers. To prevent degradation and prolong the service life of wood, a sol-gel organic-inorganic procedure was employed in this study. Aluminum sulfate (Al2(SO4)3), copper sulfate (CuSO4·5H2O), and boric acid (H3BO3) were introduced into phosphoric acid (H3PO4) and water glass as an antimildew agent, with different treatment concentrations (0.7, 1.4, and 2%). Wood was inoculated with Aspergillus niger and Trichoderma viride after new treatment based on the inorganic preservative. The changes in wood surface, structural chemistry, and the crystalline structure of the treated wood were examined by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD), respectively. The growth of the two mildew fungi showed distribution, and evidence of mildew covering only the untreated wood surfaces and an increase in the crystallinity of wood was observed after the process. The study suggests that the two mildew fungi investigated herein could be prevented by sol-gel coating with a Si-Al-Cu-P antimildew agent.

5.
J Hazard Mater ; 357: 271-278, 2018 09 05.
Article in English | MEDLINE | ID: mdl-29890423

ABSTRACT

In this article, smoke suppression of Si-Al mesoporous structure on medium density fiberboard (MDF) was investigated by cone calorimeter test (CCT), scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), and fourier transform infrared spectrometry (FTIR). The CCT results show that the Si-Al mesoporous structure can effectively decrease heat release rate (HRR), total heat release (THR), smoke production rate (SPR), total smoke production (TSP), smoke rate (SR), CO and CO2 concentration, etc. Particularly, the SR curves of MDF present that Si-Al mesoporous structure are considered to be a filter, which can net the solid particles and volatile flammable components in the smoke and fix onto wood fiber. Remarkably, the CO and CO2 concentration curves of MDF indicate that the Si-Al mesoporous structure has an excellent adsorption property, which can rapidly absorb CO and CO2 that generated in wood combustion process. On the other hand, the FTIR and TGA results reveal that the Si-Al mesoporous structure can significantly improve the structure of char residue.

SELECTION OF CITATIONS
SEARCH DETAIL
...