Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 159
Filter
1.
Viruses ; 16(5)2024 04 29.
Article in English | MEDLINE | ID: mdl-38793589

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces direct cytopathic effects, complicating the establishment of low-cytotoxicity cell culture models for studying its replication. We initially developed a DNA vector-based replicon system utilizing the CMV promoter to generate a recombinant viral genome bearing reporter genes. However, this system frequently resulted in drug resistance and cytotoxicity, impeding model establishment. Herein, we present a novel cell culture model with SARS-CoV-2 replication induced by Cre/LoxP-mediated DNA recombination. An engineered SARS-CoV-2 transcription unit was subcloned into a bacterial artificial chromosome (BAC) vector. To enhance biosafety, the viral spike protein gene was deleted, and the nucleocapsid gene was replaced with a reporter gene. An exogenous sequence was inserted within NSP1 as a modulatory cassette that is removable after Cre/LoxP-mediated DNA recombination and subsequent RNA splicing. Using the PiggyBac transposon strategy, the transcription unit was integrated into host cell chromatin, yielding a stable cell line capable of inducing recombinant SARS-CoV-2 RNA replication. The model exhibited sensitivity to the potential antivirals forsythoside A and verteporfin. An innovative inducible SARS-CoV-2 replicon cell model was introduced to further explore the replication and pathogenesis of the virus and facilitate screening and assessment of anti-SARS-CoV-2 therapeutics.


Subject(s)
SARS-CoV-2 , Virus Replication , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Humans , COVID-19/virology , Cell Culture Techniques , Replicon/genetics , Animals , Genome, Viral , Cell Line , Chromosomes, Artificial, Bacterial/genetics , Chlorocebus aethiops , Vero Cells , RNA, Viral/genetics , RNA, Viral/metabolism , Genes, Reporter , Recombination, Genetic
2.
Eur J Med Chem ; 271: 116402, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38636128

ABSTRACT

Hepatitis B virus (HBV) capsid assembly modulators (CAMs) represent a promising therapeutic approach for the treatment of HBV infection. In this study, the hit compound CDI (IC50 = 2.46 ± 0.33 µM) was identified by screening of an in-house compound library. And then novel potent benzimidazole derivatives were designed and synthesized as core assembly modulators, and their antiviral effects were evaluated in vitro and in vivo biological experiments. The results indicated that compound 26f displayed the most optimized modulator of HBV capsid assembly (IC50 = 0.51 ± 0.20 µM, EC50 = 2.24 ± 0.43 µM, CC50 = 84.29 µM) and high selectivity index. Moreover, treatment with compound 26f for 14 days significantly decreased serum levels of HBV DNA levels in the Hydrodynamic-Injection (HDI) mouse model. Therefore, compound 26f could be considered as a promising candidate drug for further development of novel HBV CAMs with the desired potency and safety.


Subject(s)
Antiviral Agents , Benzimidazoles , Hepatitis B virus , Hepatitis B , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Benzimidazoles/chemical synthesis , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , Hepatitis B virus/drug effects , Animals , Mice , Humans , Hepatitis B/drug therapy , Structure-Activity Relationship , Molecular Structure , Dose-Response Relationship, Drug , Capsid/drug effects , Capsid/metabolism , Microbial Sensitivity Tests , Hep G2 Cells , Drug Development
3.
Article in English | MEDLINE | ID: mdl-38655616

ABSTRACT

Vaccines play essential roles in the fight against the COVID-19 pandemic. The development and assessment of COVID-19 vaccines have generally focused on the induction and boosting of neutralizing antibodies targeting the SARS-CoV-2 spike (S) protein. Due to rapid and continuous variation in the S protein, such vaccines need to be regularly updated to match newly emerged dominant variants. T-cell vaccines that target MHC I- or II-restricted epitopes in both structural and non-structural viral proteins have the potential to induce broadly cross-protective and long-lasting responses. In this work, the entire proteome encoded by SARS-CoV-2 (Wuhan-hu-1) is subjected to immunoinformatics-based prediction of HLA-A*02:01-restricted epitopes. The immunogenicity of the predicted epitopes is evaluated using peripheral blood mononuclear cells from convalescent Wuhan-hu-1-infected patients. Furthermore, predicted epitopes that are conserved across major SARS-CoV-2 lineages and variants are used to construct DNA vaccines expressing multi-epitope polypeptides. Most importantly, two DNA vaccine constructs induce epitope-specific CD8 + T-cell responses in a mouse model of HLA-A*02:01 restriction and protect immunized mice from challenge with Wuhan-hu-1 virus after hACE2 transduction. These data provide candidate T-cell epitopes useful for the development of T-cell vaccines against SARS-CoV-2 and demonstrate a strategy for quick T-cell vaccine candidate development applicable to other emerging pathogens.

4.
Sci Bull (Beijing) ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38670853

ABSTRACT

Chronic hepatitis B virus (HBV) infection can lead to advanced liver pathology. Here, we establish a transgenic murine model expressing a basic core promoter (BCP)-mutated HBV genome. Unlike previous studies on the wild-type virus, the BCP-mutated HBV transgenic mice manifest chronic liver injury that culminates in cirrhosis and tumor development with age. Notably, agonistic anti-Fas treatment induces fulminant hepatitis in these mice even at a negligible dose. As the BCP mutant exhibits a striking increase in HBV core protein (HBc) expression, we posit that HBc is actively involved in hepatocellular injury. Accordingly, HBc interferes with Fis1-stimulated mitochondrial recruitment of Tre-2/Bub2/Cdc16 domain family member 15 (TBC1D15). HBc may also inhibit multiple Rab GTPase-activating proteins, including Rab7-specific TBC1D15 and TBC1D5, by binding to their conserved catalytic domain. In cells under mitochondrial stress, HBc thus perturbs mitochondrial dynamics and prevents the recycling of damaged mitochondria. Moreover, sustained HBc expression causes lysosomal consumption via Rab7 hyperactivation, which further hampers late-stage autophagy and substantially increases apoptotic cell death. Finally, we show that adenovirally expressed HBc in a mouse model is directly cytopathic and causes profound liver injury, independent of antigen-specific immune clearance. These findings reveal an unexpected cytopathic role of HBc, making it a pivotal target for HBV-associated liver disease treatment. The BCP-mutated HBV transgenic mice also provide a valuable model for understanding chronic hepatitis B progression and for the assessment of therapeutic strategies.

5.
Microorganisms ; 12(2)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38399660

ABSTRACT

Staphylococcus aureus can form biofilms on biotic surfaces or implanted materials, leading to biofilm-associated diseases in humans and animals that are refractory to conventional antibiotic treatment. Recent studies indicate that the unique ArlRS regulatory system in S. aureus is a promising target for screening inhibitors that may eradicate formed biofilms, retard virulence and break antimicrobial resistance. In this study, by screening in the library of FDA-approved drugs, tilmicosin was found to inhibit ArlS histidine kinase activity (IC50 = 1.09 µM). By constructing a promoter-fluorescence reporter system, we found that tilmicosin at a concentration of 0.75 µM or 1.5 µM displayed strong inhibition on the expression of the ArlRS regulon genes spx and mgrA in the S. aureus USA300 strain. Microplate assay and confocal laser scanning microscopy showed that tilmicosin at a sub-minimal inhibitory concentration (MIC) had a potent inhibitory effect on biofilms formed by multiple S. aureus strains and a strong biofilm-forming strain of S. epidermidis. In addition, tilmicosin at three-fold of MIC disrupted USA300 mature biofilms and had a strong bactericidal effect on embedded bacteria. Furthermore, in a BioFlux flow biofilm assay, tilmicosin showed potent anti-biofilm activity and synergized with oxacillin against USA300.

6.
J Virol ; 98(2): e0134523, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38226815

ABSTRACT

Chronic hepatitis B virus (HBV) infection (CHB) is a risk factor for the development of liver fibrosis, cirrhosis, and hepatocellular carcinoma. Covalently closed circular DNA serves as the sole transcription template for all viral RNAs and viral transcription is driven and enhanced by viral promoter and enhancer elements, respectively. Interactions between transcription factors and these cis-elements regulate their activities and change the production levels of viral RNAs. Here, we report the identification of homeobox protein MSX-1 (MSX1) as a novel host restriction factor of HBV in liver. In both HBV-transfected and HBV-infected cells, MSX1 suppresses viral gene expression and genome replication. Mechanistically, MSX1 downregulates enhancer II/core promoter (EnII/Cp) activity via direct binding to an MSX1 responsive element within EnII/Cp, and such binding competes with hepatocyte nuclear factor 4α binding to EnII/Cp due to partial overlap between their respective binding sites. Furthermore, CHB patients in immune active phase express higher levels of intrahepatic MSX1 but relatively lower levels of serum and intrahepatic HBV markers compared to those in immune tolerant phase. Finally, MSX1 was demonstrated to induce viral clearance in two mouse models of HBV persistence, suggesting possible therapeutic potential for CHB.IMPORTANCECovalently closed circular DNA plays a key role for the persistence of hepatitis B virus (HBV) since it serves as the template for viral transcription. Identification of transcription factors that regulate HBV transcription not only provides insights into molecular mechanisms of viral life cycle regulation but may also provide potential antiviral targets. In this work, we identified host MSX1 as a novel restriction factor of HBV transcription. Meanwhile, we observed higher intrahepatic MSX1 expression in chronic hepatitis B virus (CHB) patients in immune active phase compared to those in immune tolerant phase, suggesting possible involvement of MSX1 in the regulation of HBV activity by the host. Lastly, intrahepatic overexpression of MSX1 delivered by recombinant adenoviruses into two mouse models of HBV persistence demonstrated MSX1-mediated repression of HBV in vivo, and MSX1-induced clearance of intrahepatic HBV DNA in treated mice suggested its potential as a therapeutic target for the treatment of CHB.


Subject(s)
Hepatitis B, Chronic , Hepatitis B , MSX1 Transcription Factor , Animals , Humans , Mice , DNA, Circular , DNA, Viral/genetics , Hepatitis B/metabolism , Hepatitis B virus/physiology , RNA, Viral , Transcription Factors/genetics , Virus Replication/genetics , MSX1 Transcription Factor/metabolism
7.
BMC Biol ; 21(1): 205, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37784185

ABSTRACT

BACKGROUND: After the eradication of smallpox in China in 1979, vaccination with the vaccinia virus (VACV) Tiantan strain for the general population was stopped in 1980. As the monkeypox virus (MPXV) is rapidly spreading in the world, we would like to investigate whether the individuals with historic VACV Tiantan strain vaccination, even after more than 40 years, could still provide ELISA reactivity and neutralizing protection; and whether the unvaccinated individuals have no antibody reactivity against MPXV at all. RESULTS: We established serologic ELISA to measure the serum anti-MPXV titer by using immunodominant MPXV surface proteins, A35R, B6R, A29L, and M1R. A small proportion of individuals (born before 1980) with historic VACV Tiantan strain vaccination exhibited serum ELISA cross-reactivity against these MPXV surface proteins. Consistently, these donors also showed ELISA seropositivity and serum neutralization against VACV Tiantan strain. However, surprisingly, some unvaccinated young adults (born after 1980) also showed potent serum ELISA activity against MPXV proteins, possibly due to their past infection by some self-limiting Orthopoxvirus (OPXV). CONCLUSIONS: We report the serum ELISA cross-reactivity against MPXV surface protein in a small proportion of individuals both with and without VACV Tiantan strain vaccination history. Combined with our serum neutralization assay against VACV and the recent literature about mice vaccinated with VACV Tiantan strain, our study confirmed the anti-MPXV cross-reactivity and cross-neutralization of smallpox vaccine using VACV Tiantan strain. Therefore, it is necessary to restart the smallpox vaccination program in high risk populations.


Subject(s)
Cross Reactions , Monkeypox virus , Smallpox Vaccine , Vaccination , Animals , Humans , Mice , Young Adult , Antibody Formation , East Asian People , Membrane Proteins , Smallpox/prevention & control , Vaccinia virus , Smallpox Vaccine/immunology , Smallpox Vaccine/therapeutic use , China
8.
J Med Virol ; 95(9): e29062, 2023 09.
Article in English | MEDLINE | ID: mdl-37665238

ABSTRACT

Hepatitis B virus (HBV) covalently closed circular DNA (cccDNA), the transcription template for all viral mRNAs, is highly stable and current treatment options cannot effectively induce its clearance. Previously, we established an HBV persistence mouse model based on a clinical isolate (termed BPS) and identified interleukin-21 (IL-21) as a potent inducer of HBV clearance. Lipid nanoparticle (LNP) mediated delivery of mRNA has proven to be a highly safe and effective delivery platform. This work explored the applicability and effectiveness of the mRNA-LNP platform in IL-21-based HBV therapies. First, LNP-encapsulated murine IL-21 mRNA (LNP-IL-21) was prepared, characterized, and demonstrated to engender IL-21 expression in vitro and in vivo. Next, LNP-IL-21 was shown to induce clearance of both serum and intrahepatic HBV antigen and DNA in two HBV persistence mouse models based on BPS and recombinant cccDNA (rcccDNA), respectively, which was associated with HBV-specific humoral and cellular immune responses. Furthermore, peripheral blood mononuclear cells from BPS persistence mice treated ex vivo with LNP-IL-21 and HBV surface antigen (HBsAg) could induce similar HBV clearance upon infusion into recipient mice. These findings indicated that IL-21 combined with mRNA-LNP platform represents a valid and promising strategy for developing novel therapeutics against chronic HBV infection.


Subject(s)
Hepatitis B virus , Leukocytes, Mononuclear , Animals , Mice , Hepatitis B virus/genetics , Hepatitis B Surface Antigens/genetics , Disease Models, Animal , RNA, Messenger
9.
J Med Virol ; 95(8): e28995, 2023 08.
Article in English | MEDLINE | ID: mdl-37522259

ABSTRACT

BK polyomavirus (BKV) is a small non-enveloped DNA virus. BKV infection or reactivation may cause BKV-associated nephropathy and hemorrhagic cystitis in immunosuppressed transplant recipients. No effective antivirals or prevention strategies are available against BKV infections. The current BKV reverse system employs the transfection of purified full-length linear viral genomes released by enzyme digestion from BKV genomic plasmids. The method is laborious and often results in variable DNA yield and quality, which can affect the efficiency of transfection and subsequent formation of circular viral genomes in cells. In this study, we report the generation of circular viral genomes by Cre-mediated DNA recombination in cells directly transfected with BKV precursor genomic plasmids. The novel system supported efficient viral expression and replication, and produced a higher level of infectious virions compared with the transfection with linear BKV genomes. Furthermore, we successfully constructed recombinant BKV capable of reporter gene expression. In conclusion, the novel BKV reverse genetic system allows for simpler manipulation of BKV genome with better virus yield, providing a tool for the study of BKV life cycle and antiviral screening.


Subject(s)
BK Virus , Kidney Transplantation , Polyomavirus Infections , Tumor Virus Infections , Humans , BK Virus/genetics , Reverse Genetics , DNA
10.
Commun Biol ; 6(1): 592, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37264086

ABSTRACT

Neutralizing antibodies exert a potent inhibitory effect on viral entry; however, they are less effective in therapeutic models than in prophylactic models, presumably because of their limited efficacy in eliminating virus-producing cells via Fc-mediated cytotoxicity. Herein, we present a SARS-CoV-2 spike-targeting bispecific T-cell engager (S-BiTE) strategy for controlling SARS-CoV-2 infection. This approach blocks the entry of free virus into permissive cells by competing with membrane receptors and eliminates virus-infected cells via powerful T cell-mediated cytotoxicity. S-BiTE is effective against both the original and Delta variant of SARS-CoV2 with similar efficacy, suggesting its potential application against immune-escaping variants. In addition, in humanized mouse model with live SARS-COV-2 infection, S-BiTE treated mice showed significantly less viral load than neutralization only treated group. The S-BiTE strategy may have broad applications in combating other coronavirus infections.


Subject(s)
COVID-19 , Animals , Mice , SARS-CoV-2 , Antibodies, Viral , Neutralization Tests , RNA, Viral , T-Lymphocytes
11.
Antiviral Res ; 216: 105643, 2023 08.
Article in English | MEDLINE | ID: mdl-37236321

ABSTRACT

Hepatitis B virus (HBV) DNA is much higher during HBeAg-positive chronic HBV infection (EP-CBI) than during HBeAg-negative chronic HBV infection (EN-CBI), although the necroinflammation in liver is minimal and the adaptive immune response is similar in both phases. We previously reported that mRNA levels of EVA1A were higher in EN-CBI patients. In this study, we aimed to investigate whether EVA1A inhibits HBV gene expression and examine the underlying mechanisms. The available cell models for HBV replication and model HBV mice were used to investigate how EVA1A regulates HBV replication and the antiviral activity based on gene therapy. The signaling pathway was determined through RNA sequencing analysis. The results demonstrated that EVA1A can inhibit HBV gene expression in vitro and in vivo. In particular, EVA1A overexpression resulted in accelerated HBV RNA degradation and activation of the PI3K-Akt-mTOR pathway, two processes that directly and indirectly inhibiting HBV gene expression. EVA1A is a promising candidate for treating chronic hepatitis B (CHB). In conclusion, EVA1A is a new host restriction factor that regulates the HBV life cycle via a nonimmune process.


Subject(s)
Hepatitis B virus , Hepatitis B, Chronic , Mice , Animals , Hepatitis B virus/genetics , Hepatitis B e Antigens/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Virus Replication
12.
Eur J Med Chem ; 257: 115487, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37257212

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 continues to pose a great threat to public health while various vaccines are available worldwide. Main protease (Mpro) has been validated as an effective anti-COVID-19 drug target. Using medicinal chemistry and rational drug design strategies, we identified a quinazolin-4-one series of nonpeptidic, noncovalent SARS-CoV-2 Mpro inhibitors based on baicalein, 5,6,7-trihydroxy-2-phenyl-4H-chromen-4-one. In particular, compound C7 exhibits superior inhibitory activity against SARS-CoV-2 Mpro relative to baicalein (IC50 = 0.085 ± 0.006 and 0.966 ± 0.065 µM, respectively), as well as improved physicochemical and drug metabolism and pharmacokinetics (DMPK) properties. In addition, C7 inhibits viral replication in SARS-CoV-2-infected Vero E6 cells more effectively than baicalein (EC50 = 1.10 ± 0.12 and 5.15 ± 1.64 µM, respectively) with low cytotoxicity (CC50 > 50 µM). An X-ray co-crystal structure reveals a non-covalent mechanism of action, and a noncanonical binding mode not observed by baicalein. These results suggest that C7 represents a promising lead for development of more effective SARS-CoV-2 Mpro inhibitors and anti-COVID-19 drugs.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Pandemics , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Peptide Hydrolases
13.
J Hepatocell Carcinoma ; 10: 599-609, 2023.
Article in English | MEDLINE | ID: mdl-37069959

ABSTRACT

Objective: Pre-S1 antigen (pre-S1) is a component of hepatitis B virus large surface antigen (L-HBsAg). This study aimed to investigate the association between clinical pre-S1 antigen (pre-S1) status and adverse prognostic events in chronic hepatitis B (CHB) patients. Methods: This study retrospectively enrolled 840 CHB patients with comprehensive clinical data, including 144 patients with multiple follow-up of pre-S1 status. All patients were tested for serum pre-S1 and divided into pre-S1 positive and negative groups. Single factor and logistic multiple regression analyses were performed to explore the association between pre-S1 and other HBV biomarkers with the risk of hepatocellular carcinoma (HCC) in CHB patients. The pre-S1 region sequences of HBV DNA were obtained from one pre-S1 positive and two pre-S1 negative treatment-naïve patients using polymerase chain reaction (PCR) amplification followed by Sanger sequencing. Results: The quantitative HBsAg level was significantly higher in the pre-S1 positive group than that in the pre-S1 negative group (Z=-15.983, P<0.001). The positive rate of pre-S1 increased significantly with the increase in HBsAg level (χ 2=317.963, P<0.001) and HBV DNA load (χ 2=15.745, P<0.001). The pre-S1 negative group had a higher HCC risk than the pre-S1 positive group (Z=-2.00, P=0.045, OR=1.61). Moreover, patients in the sustained pre-S1 negative group had a higher HCC risk (Z=-2.56, P=0.011, OR=7.12) than those in the sustained pre-S1 positive group. The sequencing results revealed mutations in the pre-S1 region from samples of pre-S1 negative patients, including frameshift and deletion mutations. Conclusion: Pre-S1 is a biomarker that indicates the presence and replication of HBV. Pre-S1 sustained negativity attributed to pre-S1 mutations in CHB patients may be associated with a higher risk of HCC, which has clinical significance and warrant further investigations.

16.
Nat Commun ; 13(1): 7215, 2022 11 24.
Article in English | MEDLINE | ID: mdl-36433955

ABSTRACT

Tumour cell metabolic plasticity is essential for tumour progression and therapeutic responses, yet the underlying mechanisms remain poorly understood. Here, we identify Prospero-related homeobox 1 (PROX1) as a crucial factor for tumour metabolic plasticity. Notably, PROX1 is reduced by glucose starvation or AMP-activated protein kinase (AMPK) activation and is elevated in liver kinase B1 (LKB1)-deficient tumours. Furthermore, the Ser79 phosphorylation of PROX1 by AMPK enhances the recruitment of CUL4-DDB1 ubiquitin ligase to promote PROX1 degradation. Downregulation of PROX1 activates branched-chain amino acids (BCAA) degradation through mediating epigenetic modifications and inhibits mammalian target-of-rapamycin (mTOR) signalling. Importantly, PROX1 deficiency or Ser79 phosphorylation in liver tumour shows therapeutic resistance to metformin. Clinically, the AMPK-PROX1 axis in human cancers is important for patient clinical outcomes. Collectively, our results demonstrate that deficiency of the LKB1-AMPK axis in cancers reactivates PROX1 to sustain intracellular BCAA pools, resulting in enhanced mTOR signalling, and facilitating tumourigenesis and aggressiveness.


Subject(s)
AMP-Activated Protein Kinases , Neoplasms , Humans , Amino Acids , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Cell Transformation, Neoplastic , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , TOR Serine-Threonine Kinases , Transcription Factors/metabolism
17.
Antiviral Res ; 206: 105404, 2022 10.
Article in English | MEDLINE | ID: mdl-36049553

ABSTRACT

Chronic infection by hepatitis B virus (HBV) is associated with high risks of liver fibrosis, cirrhosis and hepatocellular carcinoma. HBV covalently closed circular DNA (cccDNA) in the nucleus of infected hepatocyte serves as transcription template. Neither natural resolution of acute infection nor current treatment options for chronic infection are believed to cause cccDNA clearance. We previously showed that injection of IL-33-expressing plasmid facilitated clearance of intrahepatic HBV DNA in a mouse model of HBV persistence. In this work, HBV-targeting therapeutic effects of IL-33 were further explored. Murine IL-33 delivered by recombinant adeno-associated virus (AAV-mIL-33) induced clearance of both serum HBV markers and intrahepatic HBV DNA in two mouse models of HBV persistence based on replicon plasmid and recombinant cccDNA (rcccDNA) respectively. Clearance was associated with serum ALT elevations and liver infiltrations by CD4+ and CD8+ T cells, indicating IL-33-induced cellular immune responses against HBV-harboring cells. Adoptive transfer of splenocytes from AAV-mIL-33-cured mice was indeed sufficient to engender similar clearance in recipient mice. In vitro, intracellular, instead of extracellular, IL-33 was mainly responsible for repressing viral transcription, protein production and genome replication in Huh7 cells transfected with HBV replicon or rcccDNA. IL-33 was shown to be recruited onto rcccDNA minichromosome accompanied by loss of transcriptional activation epigenetic marks. Finally, transfection of IL-33 into HBV-infected HepG2/NTCP cells resulted in reduced transcription, antigen expression and genome replication, suggesting repression of canonical cccDNA. These data demonstrated diverse inhibitory effects on HBV and HBV-infected cells mediated by IL-33, and suggest IL-33 as an interesting therapeutic candidate.


Subject(s)
Hepatitis B, Chronic , Hepatitis B , Interleukin-33 , Animals , CD8-Positive T-Lymphocytes/metabolism , DNA, Circular/genetics , DNA, Viral/genetics , DNA, Viral/metabolism , Disease Models, Animal , Hepatitis B/immunology , Hepatitis B/metabolism , Hepatitis B virus/immunology , Hepatitis B, Chronic/immunology , Hepatitis B, Chronic/metabolism , Interleukin-33/genetics , Interleukin-33/therapeutic use , Mice , Virus Replication/genetics
18.
Ann Transl Med ; 10(15): 820, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36034984

ABSTRACT

Background: Pancreatic cancer (PC) is a highly metastatic and lethal cancer with a very low overall 5-year survival rate. There is an urgent need for identifying new therapeutic agents for this deadly disease. Cardiac glycosides (CGs) have been traditionally used for their potent cardiovascular activities and have also recently been reported to exhibit anti-tumor effects. Proscillaridin A (Pro A), a natural CG, has been shown to display anti-tumor effects on multiple cancer types. Methods: The cytotoxic effect of Pro A on PC cells was determined using cell viability assay, colony formation assay and transwell assay in vitro. Cell apoptosis, cell cycle, reactive oxygen species (ROS) generation, intracellular Ca2+ levels and mitochondrial membrane potential (MMP) were assayed by flow cytometry. Panc-1-xenografted mice model was used to evaluate Pro A's effect in tumor growth. Mitochondria morphology was observed by transmission electron microscopy. LC3 aggregation was assessed by GFP-LC3 fluorescence microscopy. Gene expression was assayed by western blot or real-time quantitative polymerase chain reaction (qPCR). Results: Pro A inhibits the proliferation, migration and invasion of Panc-1, BxPC-3 and AsPC-1 PC cells in vitro, and Panc-1 cells display the highest sensitivity with an IC50 at the nano-molar level. In vivo, Pro A treatment inhibits tumor progression in Panc-1 xenograft nude mice. Pro A treatment promotes both cell apoptosis and autophagy, and Pro A-treated PC cells display characteristics of mitochondrial damage including increased ROS generation, intracellular Ca2+ levels and disruption of MMP. In addition, high sensitivity towards Pro A of Panc-1 cells compared to BxPC-3 and AsPC-1 cells could be partially attributed to the loss of endogenous SMAD4 expression in the latter. Conclusions: Our findings suggest that Pro A constitutes a promising therapeutic candidate for certain types of PC.

19.
Nat Microbiol ; 7(7): 1063-1074, 2022 07.
Article in English | MEDLINE | ID: mdl-35773398

ABSTRACT

Frequent outbreaks of coronaviruses underscore the need for antivirals and vaccines that can counter a broad range of coronavirus types. We isolated a human antibody named 76E1 from a COVID-19 convalescent patient, and report that it has broad-range neutralizing activity against multiple α- and ß-coronaviruses, including the SARS-CoV-2 variants. 76E1 also binds its epitope in peptides from γ- and δ-coronaviruses. 76E1 cross-protects against SARS-CoV-2 and HCoV-OC43 infection in both prophylactic and therapeutic murine animal models. Structural and functional studies revealed that 76E1 targets a unique epitope within the spike protein that comprises the highly conserved S2' site and the fusion peptide. The epitope that 76E1 binds is partially buried in the structure of the SARS-CoV-2 spike trimer in the prefusion state, but is exposed when the spike protein binds to ACE2. This observation suggests that 76E1 binds to the epitope at an intermediate state of the spike trimer during the transition from the prefusion to the postfusion state, thereby blocking membrane fusion and viral entry. We hope that the identification of this crucial epitope, which can be recognized by 76E1, will guide epitope-based design of next-generation pan-coronavirus vaccines and antivirals.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antiviral Agents , Epitopes , Humans , Immunoglobulins , Mice , Spike Glycoprotein, Coronavirus/metabolism
20.
Virol Sin ; 37(4): 558-568, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35568375

ABSTRACT

Hepatitis B virus (HBV) is a primary cause of chronic liver diseases in humans. HBV infection exhibits strict host and tissue tropism. HBV core promoter (Cp) drives transcription of pregenomic RNA (pgRNA) and plays a key role in the viral life cycle. Hepatocyte nuclear factor 4α (HNF4α) acts as a major transcriptional factor that stimulates Cp. In this work, we reported that BEL7404 â€‹cell line displayed a high efficiency of DNA transfection and high levels of HBV antigen expression after transfection of HBV replicons without prominent viral replication. The introduction of exogenous HNF4α and human sodium taurocholate cotransporting polypeptide (hNTCP) expression into BEL7404 made it permissive for HBV replication and susceptible to HBV infection. BEL7404-derived cell lines with induced HBV permissiveness and susceptibility were constructed by stable co-transfection of hNTCP and Tet-inducible HNF4α followed by limiting dilution cloning. HBV replication in such cells was sensitive to inhibition by nucleotide analog tenofovir, while the infection was inhibited by HBV entry inhibitors. This cell culture system provides a new and additional tool for the study of HBV replication and infection as well as the characterization of antiviral agents.


Subject(s)
Hepatitis B virus , Hepatitis B , Antiviral Agents/therapeutic use , Cell Culture Techniques , Hepatitis B virus/physiology , Hepatocytes , Humans , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...