Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Oncol Res ; 32(7): 1185-1195, 2024.
Article in English | MEDLINE | ID: mdl-38948024

ABSTRACT

Background: Long non-coding RNAs are important regulators in cancer biology and function either as tumor suppressors or as oncogenes. Their dysregulation has been closely associated with tumorigenesis. LINC00265 is upregulated in lung adenocarcinoma and is a prognostic biomarker of this cancer. However, the mechanism underlying its function in cancer progression remains poorly understood. Methods: Here, the regulatory role of LINC00265 in lung adenocarcinoma was examined using lung cancer cell lines, clinical samples, and xenografts. Results: We found that high levels of LINC00265 expression were associated with shorter overall survival rate of patients, whereas knockdown of LINC00265 inhibited proliferation of cancer cell lines and tumor growth in xenografts. Western blot and flow cytometry analyses indicated that silencing of LINC00265 induced autophagy and apoptosis. Moreover, we showed that LINC00265 interacted with and stabilized the transcriptional co-repressor Switch-independent 3a (SIN3A), which is a scaffold protein functioning either as a tumor repressor or as an oncogene in a context-dependent manner. Silencing of SIN3A also reduced proliferation of lung cancer cells, which was correlated with the induction of autophagy. These observations raise the possibility that LINC00265 functions to promote the oncogenic activity of SIN3A in lung adenocarcinoma. Conclusions: Our findings thus identify SIN3A as a LINC00265-associated protein and should help to understand the mechanism underlying LINC00265-mediated oncogenesis.


Subject(s)
Apoptosis , Autophagy , Cell Proliferation , Lung Neoplasms , RNA, Long Noncoding , Sin3 Histone Deacetylase and Corepressor Complex , Humans , RNA, Long Noncoding/genetics , Autophagy/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Apoptosis/genetics , Animals , Mice , Sin3 Histone Deacetylase and Corepressor Complex/genetics , Cell Proliferation/genetics , Cell Line, Tumor , Repressor Proteins/genetics , Repressor Proteins/metabolism , Gene Expression Regulation, Neoplastic , Protein Stability , Gene Silencing , Oncogenes , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Xenograft Model Antitumor Assays
2.
Mediators Inflamm ; 2019: 5306541, 2019.
Article in English | MEDLINE | ID: mdl-31780861

ABSTRACT

BACKGROUND: Previous studies have demonstrated pivotal roles of disintegrin and metalloproteinase 10 (ADAM10) in the pathogenesis of sepsis. MicroRNA- (miR-) 23b has emerged as an anti-inflammatory factor that prevents multiple autoimmune diseases. However, the underlying mechanisms of miR-23b in the regulation of ADAM10 and sepsis remain uncharacterized. METHODS: The expression levels of ADAM10 and miR-23b were detected by quantitative RT-PCR and western blot analysis. Cytokine production and THP-1 cell apoptosis were measured by enzyme-linked immunosorbent and annexin V apoptosis assays. Bioinformatics analyses and qRT-PCR, western blot, and luciferase reporter assays were performed to identify ADAM10 as the target gene of miR-23b. RESULTS: miR-23b expression was downregulated in the peripheral blood mononuclear cells of sepsis patients and LPS-induced THP-1 cells and was negatively correlated with the expression of ADAM10 and inflammatory cytokines. miR-23b regulated ADAM10 expression by directly binding to the 3'-UTR of ADAM10 mRNA. The overexpression of miR-23b alleviated the LPS-stimulated production of inflammatory cytokines (TNF-α, IL-1ß, and IL-6) and apoptosis by targeting ADAM10 in THP-1 cells. The inhibitor or knockdown of ADAM10 elicited effects similar to those of miR-23b on THP-1 cells upon LPS stimulation. CONCLUSIONS: The present study demonstrated that miR-23b negatively regulated LPS-induced inflammatory responses by targeting ADAM10. The molecular regulatory mechanism of miR-23b in ADAM10 expression and sepsis-induced inflammatory consequences may provide potential therapeutic targets for sepsis.


Subject(s)
ADAM10 Protein/metabolism , Amyloid Precursor Protein Secretases/metabolism , Inflammation/immunology , Inflammation/metabolism , Membrane Proteins/metabolism , MicroRNAs/metabolism , Sepsis/metabolism , ADAM10 Protein/genetics , Amyloid Precursor Protein Secretases/genetics , Computational Biology , Enzyme-Linked Immunosorbent Assay , Human Umbilical Vein Endothelial Cells , Humans , Inflammation/genetics , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Leukocytes, Mononuclear/metabolism , Membrane Proteins/genetics , MicroRNAs/genetics , Monocytes , Sepsis/genetics , Sepsis/immunology , Signal Transduction , THP-1 Cells , Tumor Necrosis Factor-alpha/metabolism
3.
Exp Ther Med ; 13(6): 3594-3602, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28588686

ABSTRACT

Kidney injury molecule-1 (Kim-1) and neutrophil gelatinase-associated lipocalin (NGAL) have been investigated as biomarkers for acute kidney injury (AKI). However, they are seldom investigated in patients with septic AKI treated with continuous renal replacement therapy (CRRT). The aim of the present study was to investigate the therapeutic effectiveness and possible mechanisms of CRRT in septic AKI by observing the changes in Kim-1 and NGAL levels. A group of 38 patients with septic AKI was randomly divided into the conventional drug treatment group (group A) and the CRRT group (group B). All patients were treated with standard antisepsis agents, and group B was additionally submitted to CRRT for 24 h. The levels of Kim-1 and NGAL in serum, urine and the ultrafiltrate of CRRT were measured prior to and at 12, 24, and 48 h after treatment. In group A, urinary Kim-1 (uKim-1) levels at 12, 24 and 48 h were lower than prior to treatment (P<0.05), whereas urinary NGAL (uNGAL) showed no difference among the various time points (P>0.05). In group B, uKim-1 was decreased at 24 and 48 h compared with before treatment (all P<0.05), whereas uNGAL was decreased at 48 h (P<0.05). Serum Kim-1 did not change with time in groups A and B (P>0.05), whereas serum NGAL was increased after treatment in group A (P<0.05) but did not change in group B (P>0.05). Kim-1 and NGAL were not detected in the ultrafiltrate of CRRT. uKim-1 and uNGAL decreased significantly after CRRT, and therefore may be used to reflect the change of renal function during CRRT and to evaluate the therapeutic effectiveness of the method.

4.
Crit Care ; 19: 73, 2015 Mar 05.
Article in English | MEDLINE | ID: mdl-25888255

ABSTRACT

INTRODUCTION: Although genetic variants of the A disintegrin and metalloproteinase 10 (ADAM10) gene have been shown to be associated with susceptibility to several inflammatory-related diseases, to date little is known about the clinical relationship in the development of sepsis. METHODS: Two genetic variants in the promoter of ADAM10 were selected to analyze the potential association with the risk of sepsis. A total of 440 sepsis patients and 450 matched healthy individuals in two independent Chinese Han population were enrolled. Pyrosequencing and polymerase chain reaction-length polymorphism was used to determine the genotypes of the rs514049 and rs653765. A real-time qPCR method was used to detect the mRNA level of ADAM10. Enzyme-linked immunosorbent assay was used to measure the expression levels of substrates CX3CL1, interleukin (IL)-6R, tumor necrosis factor alpha (TNF-α), and the pro-inflammatory cytokines IL-1ß and IL-6. Luciferase assay was used to analyze the activities of the promoter haplotypes of ADAM10. RESULTS: No statistically significant differences between sepsis cases and controls in the genotype or allele frequencies were observed, suggesting that ADAM10 single nucleotide polymorphisms (SNPs) may not be risk factors for the occurrence of sepsis. A significant difference in the genotype and allele frequencies of the rs653765 SNP between patients with sepsis subtype and severe sepsis (P = 0.0014) or severe sepsis/sepsis shock (P = 0.0037) were observed. Moreover, the rs653765 CC genotype in severe sepsis showed a higher ADAM10 level compared to healthy groups, and the rs653765 CC polymorphism had a strong impact on the production of the ADAM10 substrates CX3CL1, IL-6R and TNF-α. Furthermore, the functional assay showed that ADAM10 C-A haplotype carriers exhibited significantly higher reporter activity compared with the T-A carriers and T-C carriers in human acute monocytic leukemia cell line. CONCLUSIONS: Our data initially indicated the ADAM10 rs653765 polymorphism was associated with the development of severe sepsis; the risk CC genotype could functionally affect the expression level of ADAM10 mRNA and was accompanied by the up-regulation of its substrates. Thus, ADAM10 might be clinically important and play a critical role in the pathogenesis of the development of sepsis, with potentially important therapeutic implications.


Subject(s)
ADAM Proteins/genetics , Amyloid Precursor Protein Secretases/genetics , Membrane Proteins/genetics , Polymorphism, Single Nucleotide , Sepsis/genetics , ADAM Proteins/metabolism , ADAM10 Protein , Adult , Aged , Aged, 80 and over , Amyloid Precursor Protein Secretases/metabolism , Asian People/genetics , Case-Control Studies , China , Cytokines/metabolism , Female , Gene Frequency , Haplotypes , Humans , Interleukins/metabolism , Male , Membrane Proteins/metabolism , Middle Aged , Polymerase Chain Reaction/methods , Promoter Regions, Genetic , Sepsis/classification , Sepsis/metabolism , Up-Regulation
5.
PPAR Res ; 2014: 701971, 2014.
Article in English | MEDLINE | ID: mdl-25152754

ABSTRACT

Peroxisome proliferator-activated receptor-γ (PPAR-γ) is a ligand-binding nuclear receptor, and its activation plays a prominent role in regulating the inflammatory response. Therefore, PPAR-γ has been suggested as a candidate gene for sepsis. In the present study, we investigated the association between the Pro12Ala polymorphism of PPAR-γ and sepsis in a Han Chinese population. A total of 308 patients with sepsis and 345 healthy controls were enrolled in this study. Genotyping was performed using the polymerase chain reaction-ligation detection reaction (PCR-LDR) method. No significant differences were detected in the allele and genotype distributions of the PPAR-γ Pro12Ala SNP between septic patients and controls (P = 0.622 for genotype; P = 0.629 for allele). However, stratification by subtypes (sepsis, septic shock, and severe sepsis) revealed a statistically significant difference in the frequency of the Ala allele and Ala-carrier genotype between the patients with the sepsis subtype and the healthy controls (P = 0.014 for allele and P = 0.012, for genotype). Moreover, significant differences were found in the frequency of the Ala allele and genotype between the sepsis survivors and nonsurvivors (all P = 0.002). In the survivors, the PPAR-γ Pro12Ala genotype was significantly associated with decreased disease severity and recovery time (all P < 0.001). Thus, genetic polymorphism is thought to play a role in the development and outcome of sepsis.

6.
Mediators Inflamm ; 2014: 916202, 2014.
Article in English | MEDLINE | ID: mdl-24701036

ABSTRACT

MicroRNA-146a (miR-146a) acts as a pivotal regulatory molecule in immune response and various diseases, such as carcinoma and autoimmune diseases. Growing evidences have demonstrated the association of miR-146a gene single-nucleotide polymorphisms (SNPs) with risk of several diseases, but no genetic relevance studies of miR-146a gene polymorphisms to sepsis have been reported by now. Our study has analyzed the association of sepsis with two functional miR-146a gene SNPs rs2910164 G/C and rs57095329 A/G in a Chinese Han population (226 sepsis cases; 206 healthy controls). Our results indicated a higher prevalence of the miR-146a gene SNP rs2910164 C allele and CC genotype in patients with severe sepsis (rs2910164G versus rs2910164C: P = 0.0029, odds ratio (OR) = 1.664; GG+GC versus CC: P = 0.0045, OR = 1.947). Neither the genotype nor the allele in rs57095329 showed significant differences between the septic cases and the controls (P = 0.5901 and 0.3580, resp.), and no significant difference was observed in the subgroups. In addition, we confirmed that the two SNPs rs2910164 and rs57095329 could functionally affect the miR-146a expression levels and the reduction of miR146a was accompanied with the upregulation of the expression levels of TRAF-6 and IRAK-1 in severe sepsis patients. This present study might provide valuable clinical evidence that miR-146a gene polymorphism rs2910164 is associated with the risk of severe sepsis.


Subject(s)
Genetic Predisposition to Disease , MicroRNAs/genetics , MicroRNAs/metabolism , Polymorphism, Genetic , Sepsis/genetics , Adaptor Proteins, Vesicular Transport/metabolism , Adult , Aged , Case-Control Studies , China , Female , Gene Expression Regulation , Genotype , Humans , Leukocytes, Mononuclear/cytology , Male , Middle Aged , Odds Ratio , Sepsis/enzymology , TNF Receptor-Associated Factor 6/metabolism
7.
PLoS One ; 9(2): e89019, 2014.
Article in English | MEDLINE | ID: mdl-24586483

ABSTRACT

miR146a is well known for its regulatory role in the immune response and inflammation. Recent studies have demonstrated the links between miR146a and Alzheimer disease (AD) and suggested that miR146a may be involved in neuroinflammation and the metabolism of amyloid-ß (Aß), which are critical events in AD pathology. Although genetic studies have focused on the association between the miR146a gene and susceptibility to several diseases, no association study of miR146a variability with AD has been conducted. In this report, we performed a case-control association study to analyze the genotype and allele distributions of the miR146a, rs2910464 and rs57095329 polymorphisms in a Chinese population consisting of 292 AD cases and 300 healthy controls. We found a significant difference in the genotypes and allele frequencies of rs57095329 between the AD cases and the controls (p = 0.0147 and p = 0.0184, respectively), where the AA genotype of rs57095329 was associated with an increased risk of AD as well the cognitive decline in AD patients. Additionally, the AA genotype of rs57095329 exhibited significantly higher miR146a expression than the GG+GA genotypes of rs2910164 in the peripheral blood cells (PBMCs) of healthy individuals and had a stronger effect on the production of IL-6 and IL-1ß when the cells were stimulated with LPS. Our data provide preliminary evidence that the rs57095329 polymorphism in the miR146a promoter is involved in the genetic susceptibility to AD, and this risk AA genotype may increase the expression of miR146a and influence certain proinflammatory cytokines, thus playing a role in the pathogenesis of AD.


Subject(s)
Asian People/genetics , Cognition Disorders/genetics , Genetic Predisposition to Disease/genetics , MicroRNAs/genetics , Polymorphism, Single Nucleotide/genetics , Promoter Regions, Genetic/genetics , Aged , Alleles , Alzheimer Disease , Case-Control Studies , Cognition , Female , Gene Frequency/genetics , Genotype , Humans , Interleukin-1beta/genetics , Interleukin-6/genetics , Male , Risk
SELECTION OF CITATIONS
SEARCH DETAIL
...