Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Opt Express ; 32(9): 16027-16039, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38859240

ABSTRACT

We present the theory and experimental results of a microwave photonic (MWP) filter based instantaneous frequency measurement system. A quantum dash mode-locked laser is used as an optical frequency comb source. With up to 41 flat comb lines and a real-time feedback loop for comb shaping, a set of MWP filters with linear frequency responses for either linear unit or dB unit are experimentally demonstrated. The maximum measurement frequency can be up to 20 GHz limited by the available test-and-measurement instruments. By using one MWP filter, the root-mean-square error is 51∼66 MHz, which can be improved to 42.2 MHz for linear unit, and 30.7 MHz for dB unit by using two MWP filters together.

2.
Front Genet ; 15: 1402771, 2024.
Article in English | MEDLINE | ID: mdl-38826799

ABSTRACT

Iron oxide nanoparticles are a type of nanomaterial composed of iron oxide (Fe3O4 or Fe2O3) and have a wide range of applications in magnetic resonance imaging. Compared to iron oxide nanoparticles, extremely small iron oxide nanoparticles (ESIONPs) (∼3 nm in diameter) can improve the imaging performance due to a smaller size. However, there are currently no reports on the potential toxic effects of ESIONPs on the human body. In this study, we applied ESIONPs to a zebrafish model and performed weighted gene co-expression network analysis (WGCNA) on differentially expressed genes (DEGs) in zebrafish embryos of 48 hpf, 72 hpf, 96 hpf, and 120 hpf using RNA-seq technology. The key hub genes related to neurotoxicity and ferroptosis were identified, and further experiments also demonstrated that ESIONPs impaired the neuronal and muscle development of zebrafish, and induced ferroptosis, leading to oxidative stress, cell apoptosis, and inflammatory response. Here, for the first time, we analyzed the potential toxic effects of ESIONPs through WGCNA. Our studies indicate that ESIONPs might have neurotoxicity and could induce ferroptosis, while abnormal accumulation of iron ions might increase the risk of early degenerative neurological diseases.

3.
Langmuir ; 40(21): 11087-11097, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38718184

ABSTRACT

Photocatalytic technology is an attractive option for environmental remediation because of its green and sustainable nature. However, the inefficient utilization of solar energy and powder morphology currently impede its practical application. Here, we designed a floatable photocatalyst by anchoring 0D Cu2(OH)PO4 (CHP) nanoparticles on 2D graphene to construct 0D/2D CHP/reduced graphene oxide (rGO) aerogels. The CHP/rGO aerogels have interconnected mesopores that provide a large surface area, promoting particle dispersion and increasing the number of active sites. Moreover, the optical response of the CHP/rGO aerogel has been significantly expanded to cover the full spectrum of the solar light. Notably, the 20%CHP/rGO aerogel displayed a high degradation rate (k = 0.178 min-1) taking methylene blue (MB) as a model pollutant under light irradiation (λ > 420 nm). The enhanced photocatalytic activity is ascribed to the rapid electron transfer in the CHP/rGO heterostructures, as supported by the DFT theoretical calculations. Our research highlights the utilization of full spectrum responsive photocatalysts for the elimination of organic pollutants from wastewater under solar light irradiation, as well as the potential for catalyst recovery using floatable aerogels to meet industrial requirements.

5.
Environ Sci Pollut Res Int ; 31(16): 24398-24411, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38441737

ABSTRACT

CH3SH is a potential hazard to both chemical production and human health, so controlling its emissions is an urgent priority. In this work, a series of transition metal-loaded H-ZSM-5 adsorbents (Si/Al = 25) (Cu, Fe, Co, Ni, Mn, and Zn) were synthesized through the wet impregnation method and tested for CH3SH physicochemical adsorption at 60 °C. It was shown that the Cu-modified H-ZSM-5 adsorbent was much more active for CH3SH removal due to its abundant strong acid sites than other transition metal-modified H-ZSM-5 adsorbents. The detailed physicochemical properties of various modified H-ZSM-5 adsorbents were characterized by SEM, XRD, N2 physisorption, XPS, H2-TPR, and NH3-TPD. The effects of metal loading mass ratio, calcination temperature, and acid or alkali modification on the performance of the adsorbent were also investigated, and finally 20% Cu/ZSM-5 was found to have the best adsorption capacity after calcined at 350 °C. Additionally, the Cu/ZSM-5 adsorbent modified by sodium bicarbonate could expose more active components, which improved the adsorbent's stability. However, the consumption and reduction of the active component Cu2+ and the accumulation of sulfate during the adsorption process are the main reasons for the deactivation of the adsorbent. In addition, the simultaneous purging of N2 + O2 can effectively restore the adsorption capacity of the deactivated adsorbent and can be used as a potential strategy to regenerate the adsorbent.


Subject(s)
Transition Elements , Humans , Adsorption , Copper/chemistry , Temperature
6.
Nat Methods ; 21(3): 521-530, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38366241

ABSTRACT

Spatial omics technologies can reveal the molecular intricacy of the brain. While mass spectrometry imaging (MSI) provides spatial localization of compounds, comprehensive biochemical profiling at a brain-wide scale in three dimensions by MSI with single-cell resolution has not been achieved. We demonstrate complementary brain-wide and single-cell biochemical mapping using MEISTER, an integrative experimental and computational mass spectrometry (MS) framework. Our framework integrates a deep-learning-based reconstruction that accelerates high-mass-resolving MS by 15-fold, multimodal registration creating three-dimensional (3D) molecular distributions and a data integration method fitting cell-specific mass spectra to 3D datasets. We imaged detailed lipid profiles in tissues with millions of pixels and in large single-cell populations acquired from the rat brain. We identified region-specific lipid contents and cell-specific localizations of lipids depending on both cell subpopulations and anatomical origins of the cells. Our workflow establishes a blueprint for future development of multiscale technologies for biochemical characterization of the brain.


Subject(s)
Deep Learning , Rats , Animals , Mass Spectrometry/methods , Brain , Lipids/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
7.
Article in English | MEDLINE | ID: mdl-38318959

ABSTRACT

OBJECTIVES: Our goal was to determine the incidence and characteristics of postoperative intra-abdominal hypertension (IAH) in paediatric patients undergoing open-heart surgery. METHODS: This single-centre study included consecutive children (aged <16 years) who underwent open-heart surgery between July 2020 and February 2021. Patients who entered the study were followed until in-hospital death or hospital discharge. The study consisted of 2 parts. Part I was a prospective observational cohort study that was designed to discover the association between exposures and IAH. Postoperative intra-abdominal pressure was measured immediately after admission to the intensive care unit and every 6 h thereafter. Part II was a cross-sectional study to compare the hospital-related adverse outcomes between the IAH and the no-IAH cohorts. RESULTS: Postoperatively, 24.7% (38/154) of the patients exhibited IAH, whereas 3.9% (6/154) developed abdominal compartment syndrome. The majority (29/38, 76.3%) of IAH cases occurred within the first 24 h in the intensive care unit. Multivariable analysis showed that the Society of Thoracic Surgeons-European Association for Cardio-Thoracic Surgery score [odds ratio (OR) = 1.86, 95% confidence interval (CI) 1.23-2.83, P = 0.004], right-sided heart lesion (OR = 5.60, 95% CI 2.34-13.43, P < 0.001), redo sternotomy (OR = 4.35, 95% CI 1.64-11.57, P = 0.003), high baseline intra-abdominal pressure (OR = 1.43, 95% CI 1.11-1.83, P = 0.005), prolonged cardiopulmonary bypass duration (OR = 1.01, 95% CI 1.00-1.01, P = 0.005) and deep hypothermic circulatory arrest (OR = 5.14, 95% CI 1.15-22.98, P = 0.032) were independent predictors of IAH occurrence. IAH was associated with greater inotropic support (P < 0.001), more gastrointestinal complications (P = 0.001), sepsis (P = 0.003), multiple organ dysfunction syndrome (P < 0.001) and prolonged intensive care unit stay (z = -4.916, P < 0.001) and hospitalization (z = -4.710, P < 0.001). The occurrence of a composite outcome (P = 0.009) was significantly increased in patients with IAH. CONCLUSIONS: IAH is common in children undergoing cardiac surgery and is associated with worse hospital outcomes. Several factors may be associated with the development of IAH, including basic cardiac physiology and perioperative factors. TRIAL INFORMATION: This study was registered in the Chinese Clinical Trial Registry (Trial number: ChiCTR2000034322)URL site: https://www.chictr.org.cn/hvshowproject.html?id=41363&v=1.4.

8.
Opt Express ; 32(1): 217-229, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38175050

ABSTRACT

We investigate the capabilities and limitations of quantum-dash mode-locked lasers (QD-MLLDs) as optical frequency comb sources in coherent optical communication systems. We demonstrate that QD-MLLDs are on par with conventional single-wavelength narrow linewidth laser sources and can support high symbol rates and modulation formats. We manage to transmit 64 quadrature amplitude modulation (QAM) signals up to 80 GBd over 80 km of standard single-mode fiber (SSMF), which highlights the distinctive phase noise performance of the QD-MLLD. Using a 38.5 GHz (6 dB bandwidth) silicon photonic (SiP) modulator, we achieve a maximum symbol rate of 104 GBd with 16QAM signaling and a maximum net rate of 416 Gb/s per carrier in a single polarization setup and after 80 km-SSMF transmission. We also compare QD-MLLD performance with commercial narrow-linewidth integrable tunable laser assemblies (ITLAs) and explore their potential for use as local oscillators (LOs) and signal carriers. The QD-MLLD has 45 comb lines usable for transmission at a frequency spacing of 25 GHz, and an RF linewidth of 35 kHz.

9.
J Nutr Biochem ; 125: 109550, 2024 03.
Article in English | MEDLINE | ID: mdl-38141737

ABSTRACT

Arsenic is a human carcinogen widely distributed in the environment, and arsenic exposure from drinking water has received widespread attention as a global public health problem. Curcumin is a natural bioactive substance with high efficiency and low toxicity extracted from turmeric, which has a variety of biological properties such as antioxidation, anti-inflammation, anticancer, and immuno-modulatory activities. Curcumin is widely used in daily life as a food additive and dietary supplement. However, its protective effects in lung injuries by chronic arsenic exposure orally remain unexplored. In this study, curcumin treatment not only significantly accelerated arsenic elimination and improved lung tissue morphology, but also decreased arsenic-generated ROS by activating Nrf2 and its down-stream antioxidants. Further, curcumin alleviated inflammatory changes in mice exposed to arsenic for 6 and 12 weeks, as manifested by lung MPO levels, total protein and cellular levels in bronchoalveolar lavage fluid (BALF), serum IL-4 levels, and MAPK/NF-κB expression in lung tissue. Notably, our study also confirmed that curcumin could promote the expression and nuclear translocation of the transcription factor EB (TFEB), as well as activate TFEB-regulated autophagy in lung tissue of arsenic-treated mice, accompanied by inhibition of the AKT-mTOR signaling pathway. Overall, our study here suggests that natural bioactive compound curcumin could alleviate arsenic-induced pulmonary oxidative stress and inflammation in vivo, which is closely related to enhanced TFEB activity and induction of the autophagic process.


Subject(s)
Arsenic , Curcumin , Mice , Humans , Animals , Arsenic/toxicity , Curcumin/pharmacology , Curcumin/metabolism , Oxidative Stress , Lung , Antioxidants/pharmacology , NF-kappa B/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Autophagy
10.
Appl Opt ; 62(32): 8696-8701, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-38037987

ABSTRACT

We demonstrate photonic beamforming using a quantum-dash (QD) optical frequency comb (OFC) source. Thanks to the 25 GHz free spectral range (FSR) and up to 40 comb lines available from the QD OFC, we can implement phased antenna arrays (PAAs) with directional radiation and scanning. We consider two types of PAAs: a uniform linear array (ULA) and a uniform planar array (UPA). By selecting different comb lines with a programmable optical filter, we can tune the FSR of the OFC source and realize a discrete scanning function. We evaluate the beam squint of the ULAs, and the results show that we can achieve broadband operation. Finally, we show that we can achieve both directional radiation and scanning simultaneously using the UPA.

11.
Environ Sci Technol ; 57(45): 17553-17565, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37917662

ABSTRACT

The hydrogenation of organic sulfur (CS2) present in industrial off-gases to produce sulfur-free hydrocarbons and H2S can be achieved by using noble-metal catalysts. However, there has been a lack of comprehensive investigation into the underlying reaction mechanisms associated with this process. In this study, we have conducted an in-depth examination of the activity and selectivity of Pt- and Pd-loaded alumina-based catalysts, revealing significant disparities between them. Notably, Pd/Al2O3 catalysts exhibit an enhanced performance at low temperatures. Furthermore, we have observed that CS2 displays a higher propensity for conversion to methane when employing Pt/Al2O3 catalysts, while Pd/Al2O3 catalysts demonstrate a greater tendency for coke deposition. By combining experimental observations with theoretical calculations, we revealed that the capability of H2 spillover along with the adsorption capacity of CS2, play pivotal roles in determining the observed differences. Moreover, the key intermediate species involved in the methanation and coke pathways were identified. The intermediate CH2S* is found to be crucial in the methanation pathway, while the intermediate CSH* is identified as significant in the coke pathway.


Subject(s)
Coke , Adsorption , Aluminum Oxide , Hydrogenation , Sulfur
12.
MedComm (2020) ; 4(5): e350, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37719444

ABSTRACT

Platelets are a class of pluripotent cells that, in addition to hemostasis and maintaining vascular endothelial integrity, are also involved in tumor growth and distant metastasis. The tumor microenvironment is a complex and comprehensive system composed of tumor cells and their surrounding immune and inflammatory cells, tumor-related fibroblasts, nearby interstitial tissues, microvessels, and various cytokines and chemokines. As an important member of the tumor microenvironment, platelets can promote tumor invasion and metastasis through various mechanisms. Understanding the role of platelets in tumor metastasis is important for diagnosing the risk of metastasis and prolonging survival. In this study, we more fully elucidate the underlying mechanisms by which platelets promote tumor growth and metastasis by modulating processes, such as immune escape, angiogenesis, tumor cell homing, and tumor cell exudation, and further summarize the effects of platelet-tumor cell interactions in the tumor microenvironment and possible tumor treatment strategies based on platelet studies. Our summary will more comprehensively and clearly demonstrate the role of platelets in tumor metastasis, so as to help clinical judgment of the potential risk of metastasis in cancer patients, with a view to improving the prognosis of patients.

13.
bioRxiv ; 2023 Nov 18.
Article in English | MEDLINE | ID: mdl-37398021

ABSTRACT

Elucidating the spatial-biochemical organization of the brain across different scales produces invaluable insight into the molecular intricacy of the brain. While mass spectrometry imaging (MSI) provides spatial localization of compounds, comprehensive chemical profiling at a brain-wide scale in three dimensions by MSI with single-cell resolution has not been achieved. We demonstrate complementary brain-wide and single-cell biochemical mapping via MEISTER, an integrative experimental and computational mass spectrometry framework. MEISTER integrates a deep-learning-based reconstruction that accelerates high-mass-resolving MS by 15-fold, multimodal registration creating 3D molecular distributions, and a data integration method fitting cell-specific mass spectra to 3D data sets. We imaged detailed lipid profiles in tissues with data sets containing millions of pixels, and in large single-cell populations acquired from the rat brain. We identified region-specific lipid contents, and cell-specific localizations of lipids depending on both cell subpopulations and anatomical origins of the cells. Our workflow establishes a blueprint for future developments of multiscale technologies for biochemical characterization of the brain.

14.
Environ Res ; 236(Pt 1): 116680, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37500036

ABSTRACT

Microbial degradation of pesticide residues has the potential to reduce their hazards to human and environmental health. However, in some cases, degradation can activate pesticides, making them more toxic to microbes. Here we report on the ß-cypermethrin (ß-CY) toxicity to Bacillus cereus GW-01, a recently described ß-CY degrader, and effects of antioxidants on ß-CY degradation. GW-01 exposed to ß-CY negatively affected the growth rate. The highest maximum specific growth rate (µm) appeared at 25 mg/L ß-CY. ß-CY induced the oxidative stress in GW-01. The activities of superoxide dismutase (SOD), catalyse (CAT), and glutathione-S-transferase (GST) were significantly higher than that in control (p < 0.01); but they are decreased as growth phase pronged, which is contrary to the ß-CY degradation by GW-01 cells obtaining from various growth phase. Ascorbic acid (Vc), tea polyphenols (TP), and adenosine monophosphate (AMP) improved the degradation through changing the physiological property of GW-01. TP and AMP prompted the expression of gene encoding ß-CY degradation in GW-01, while Vc does the opposite. Biofilm formation was significantly inhibited by ß-CY, while was significantly enhanced by certain concentrations of TP and AMP (p < 0.05); while cell surface hydrophobicity (CSH) was negatively associated with ß-CY concentrations from 25 to 100 mg/L, and these 4 antioxidants all boosted the CSH. Cells grown with ß-CY had lower levels of saturated fatty acids but increased levels of some unsaturated and branched fatty acids, and these antioxidants alleviated the FA composition changes and gene expression related with FA metabolism. We also mined transcriptome analyses at lag, logarithmic, and stationary phases, and found that ß-CY induced oxidative stress. The objective of this study was to elaborate characteristics in relation to the microbial resistance of pesticide poisoning and the efficiency of pesticide degradation, and to provide a promising method for improving pesticide degradation by microbes.


Subject(s)
Antioxidants , Pesticides , Humans , Antioxidants/pharmacology , Antioxidants/metabolism , Bacillus cereus/metabolism , Biological Availability , Oxidative Stress , Pesticides/toxicity , Fatty Acids , Adenosine Monophosphate/metabolism , Adenosine Monophosphate/pharmacology
15.
Bioorg Chem ; 135: 106508, 2023 06.
Article in English | MEDLINE | ID: mdl-37023583

ABSTRACT

Fungal and viral diseases account for 70-80% of agricultural production losses caused by microbial diseases. Synthetic fungicides and antiviral agents have been used to treat plant diseases caused by plant pathogenic fungi and viruses, but their use has been criticized due to their adverse side effects. As alternative strategies, natural fungicides and antiviral agents have attracted many researchers' interest in recent years. Herein, we designed and synthesized a series of novel polycarpine simplified analogues. Antiviral activity research against tobacco mosaic virus (TMV) revealed that most of the designed compounds have good antiviral activities. The virucidal activities of 4, 6d, 6f, 6h, and 8c are higher than that of polycarpine and similar to that of ningnanmycin. The structure simplified compound 8c was selected for further antiviral mechanism research which showed that compound 8c could inhibit the formation of 20S protein discs by acting on TMV coat protein. These compounds also displayed broad-spectrum fungicidal activities against 7 kinds of plant fungi. This work lays the foundation for the application of polycarpine simplified analogues in crop protection.


Subject(s)
Fungicides, Industrial , Tobacco Mosaic Virus , Antiviral Agents/chemistry , Fungicides, Industrial/chemistry , Structure-Activity Relationship , Fungi , Drug Design
16.
J Proteome Res ; 22(2): 491-500, 2023 02 03.
Article in English | MEDLINE | ID: mdl-36695570

ABSTRACT

Improved throughput of analysis and lowered limits of detection have allowed single-cell chemical analysis to go beyond the detection of a few molecules in such volume-limited samples, enabling researchers to characterize different functional states of individual cells. Image-guided single-cell mass spectrometry leverages optical and fluorescence microscopy in the high-throughput analysis of cellular and subcellular targets. In this work, we propose DATSIGMA (DAta-driven Tools for Single-cell analysis using Image-Guided MAss spectrometry), a workflow based on data-driven and machine learning approaches for feature extraction and enhanced interpretability of complex single-cell mass spectrometry data. Here, we implemented our toolset with user-friendly programs and tested it on multiple experimental data sets that cover a wide range of biological applications, including classifying various brain cell types. Because it is open-source, it offers a high level of customization and can be easily adapted to other types of single-cell mass spectrometry data.


Subject(s)
Machine Learning , Single-Cell Analysis , Mass Spectrometry/methods , Workflow , Single-Cell Analysis/methods , Brain
17.
MAbs ; 15(1): 2163584, 2023.
Article in English | MEDLINE | ID: mdl-36683173

ABSTRACT

Over the last three decades, the appeal for monoclonal antibodies (mAbs) as therapeutics has been steadily increasing as evident with FDA's recent landmark approval of the 100th mAb. Unlike mAbs that bind to single targets, multispecific biologics (msAbs) have garnered particular interest owing to the advantage of engaging distinct targets. One important modular component of msAbs is the single-chain variable fragment (scFv). Despite the exquisite specificity and affinity of these scFv modules, their relatively poor thermostability often hampers their development as a potential therapeutic drug. In recent years, engineering antibody sequences to enhance their stability by mutations has gained considerable momentum. As experimental methods for antibody engineering are time-intensive, laborious and expensive, computational methods serve as a fast and inexpensive alternative to conventional routes. In this work, we show two machine learning approaches - one with pre-trained language models (PTLM) capturing functional effects of sequence variation, and second, a supervised convolutional neural network (CNN) trained with Rosetta energetic features - to better classify thermostable scFv variants from sequence. Both of these models are trained over temperature-specific data (TS50 measurements) derived from multiple libraries of scFv sequences. On out-of-distribution (refers to the fact that the out-of-distribution sequnes are blind to the algorithm) sequences, we show that a sufficiently simple CNN model performs better than general pre-trained language models trained on diverse protein sequences (average Spearman correlation coefficient, ρ, of 0.4 as opposed to 0.15). On the other hand, an antibody-specific language model performs comparatively better than the CNN model on the same task (ρ= 0.52). Further, we demonstrate that for an independent mAb with available thermal melting temperatures for 20 experimentally characterized thermostable mutations, these models trained on TS50 data could identify 18 residue positions and 5 identical amino-acid mutations showing remarkable generalizability. Our results suggest that such models can be broadly applicable for improving the biological characteristics of antibodies. Further, transferring such models for alternative physicochemical properties of scFvs can have potential applications in optimizing large-scale production and delivery of mAbs or bsAbs.


Subject(s)
Antibodies, Monoclonal , Single-Chain Antibodies , Amino Acid Sequence , Machine Learning , Algorithms
18.
J Hazard Mater ; 442: 130029, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36166909

ABSTRACT

Organic sulfur gases (COS, CS2 and CH3SH) are widely present in reducing industrial off-gases, and these substances pose difficulties for the recovery of carbon monoxide and other gases. The reaction pathways and reaction mechanisms of organic sulfur on different catalyst surfaces have yet to be fully summarized. The literature shows that many factors, such as catalyst synthesis method, loaded metal composition, number of surface hydroxyl groups, number of acid-base sites and methods of surface modification, have important effects on the catalytic performance of metal catalysts. Therefore, this paper presents a comprehensive review of the research on the application of catalysts such as zeolites, metal oxides, carbon-based materials, and hydrotalcite-like derivatives in the field of organic sulfur removal. Future research prospects are summarized, more in situ characterization experiments and theoretical calculations are needed for the catalytic decomposition of methanethiol to analyze the coke generation pathways at the microscopic level, while the simultaneous removal of multiple organic sulfur gases needs to be focused on. Based on previous catalyst research, we propose possible innovations in catalyst design, desulfurization technology and organic sulfur resource utilization technology.

19.
PLoS One ; 17(11): e0276811, 2022.
Article in English | MEDLINE | ID: mdl-36441701

ABSTRACT

The genetic modification of cattle has many agricultural and biomedical applications. However, random integration often leads to the unstable or differentially expression of the exogenous genes, which limit the application and development of transgenic technologies. Finding a safe locus suitable for site-specific insertion and efficient expression of exogenous genes is a good way to overcome these hurdles. In this study, we efficiently integrated three targeted vector into the cattle Rosa26 (cRosa26) by CRISPR/Cas9 technology in which EGFP was driven by CAG, EF1a, PGK and cRosa26 endogenous promoter respectively. The CRISPR/Cas9 knock-in system allows highly efficient gene insertion of different expression units at the cRosa26 locus. We also find that in the four cell lines, EGFP was stable expressed at different times, and the CAG promoter has the highest activity to activate the expression of EGFP, when compared with the cRosa26, EF1a and PGK promoter. Our results proved that cRosa26 was a locus that could integrate different expression units efficiently, and supported the friendly expression of different expression units. Our findings described here will be useful for a variety of studies using cattle.


Subject(s)
CRISPR-Cas Systems , Fetus , Cattle/genetics , Animals , Humans , Female , Pregnancy , Prenatal Care , Fibroblasts , Research
20.
Sci Total Environ ; 850: 157998, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-35964749

ABSTRACT

The migration and distribution of microplastic particles (MPs) in the natural environment has attracted global attention in recent years. However, little is known about the transport-deposition-reentrainment differences between MPs and natural mineral particles in porous media. In this study, polystyrene (PS) and silica (SiO2) particles, representing model MPs and natural mineral particles, respectively, were selected to study the responses of different particle types to changes in specific particle size and flow velocity. Three typical particle sizes and various flow velocities were chosen to compare and delineate the transport-deposition-reentrainment characteristics of PS and SiO2 in a packed-bed laboratory column. Collector efficiency was calculated using Tufenkji and Elimelech (TE) equation. The particle fractions released from the collector surfaces were predicted using DLVO theory and force analysis. Two types of particles were attached in the secondary minimum, which were either retained on the collector surface or reentrained to the fluid. The staged elution experiment wherein the flow velocity was increased experienced a period of flow shock, thus breaking the force balance of the particle. An increase in the flow velocity resulted in various degrees of particle elution. The breakthrough experiment at a specific flow velocity showed that the corresponding velocity alteration in staged elution experiment contributed to reentrainment to varying extents. When the effect of gravity on particle deposition was negligible, the particle size was larger, and the lower the velocity for releasing the particles. However, the opposite tendency was observed when considering the effect of gravity on particle deposition. Moreover, the deposition, mainly due to gravity, easily causes particle reentrainment as the flow velocity increases. This study further predicts and reveals the nature of transport and deposition differences between MPs and natural mineral particles, which helps to further assess the risk and potential of groundwater contamination with MPs of different sizes.


Subject(s)
Plastics , Silicon Dioxide , Microplastics , Polystyrenes , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL
...