Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Dalton Trans ; 53(23): 9724-9731, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38814145

ABSTRACT

Developing novel electrocatalysts for achieving high selectivity and faradaic efficiency in the carbon dioxide reduction reaction (CO2RR) poses a major challenge. In this study, a catalyst featuring a nitrogen-doped carbon shell-coated Ni nanoparticle structure is designed for efficient carbon dioxide (CO2) electroreduction to carbon monoxide (CO). The optimal Ni@NC-1000 catalyst exhibits remarkable CO faradaic efficiency (FECO) values exceeding 90% across a broad potential range of -0.55 to -0.9 V (vs. RHE), and attains the maximum FECO of 95.6% at -0.75 V (vs. RHE) in 0.5 M NaHCO3. This catalyst exhibits sustained carbon dioxide electroreduction activity with negligible decay after continuous electrolysis for 20 h. More encouragingly, a substantial current density of 200.3 mA cm-2 is achieved in a flow cell at -0.9 V (vs. RHE), reaching an industrial-level current density. In situ Fourier transform infrared spectroscopy and theoretical calculations demonstrate that its excellent catalytic performance is attributed to highly active pyrrolic nitrogen sites, promoting CO2 activation and significantly reducing the energy barrier for generating *COOH. To a considerable extent, this work presents an effective strategy for developing high-efficiency catalysts for electrochemical CO2 reduction across a wide potential window.

2.
Small ; : e2401532, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38699945

ABSTRACT

Borocarbonitride (BCN) catalysts, boasting multiple redox sites, have shown considerable potential in alkane oxidative dehydrogenation (ODH) to olefin molecules. However, their catalytic efficiency still lags behind that of leading commercial catalysts, primarily due to the limited reactivity of oxygen functional groups. In this study, a groundbreaking hybrid catalyst is developed, featuring BCN nanotubes (BCNNTs) encapsulated with manganese (Mn) clusters, crafted through a meticulous supramolecular self-assembly and postcalcination strategy. This novel catalyst demonstrates a remarkable enhancement in activity, achieving 30% conversion and ≈100% selectivity toward styrene in ethylbenzene ODH reactions. Notably, its performance surpasses both pure BCNNTs and those hosting Mn nanoparticles. Structural and kinetic analyses unveil a robust interaction between BCNNTs and the Mn component, substantially boosting the catalytic activity of BCNNTs. Furthermore, density functional theory (DFT) calculations elucidate that BCNNTs encapsulated with Mn clusters not only stabilize key intermediates (─B─O─O─B─) but also enhance the nucleophilicity of active sites through electron transfer from the Mn cluster to the BCNNTs. This electron transfer mechanism effectively lowers the energy barrier for ─C─H cleavage, resulting in a 13% improvement in catalytic activity compared to pure BCNNTs.

3.
Dalton Trans ; 52(44): 16336-16344, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37856230

ABSTRACT

Zinc sulfide (ZnS) is a promising anode material for lithium-ion batteries (LIBs) because of its high theoretical capacity, abundance, cost-effectiveness, and environmental friendliness. Herein, a hydrangea-like ZnS-carbon composite (ZnS-NC) is synthesized through the hydrothermal method and subsequent pyrolysis of a supramolecular precursor guanosine. The resulting composite comprises ultrafine ZnS nanoparticles firmly stabilized on a nitrogen-doped carbon matrix, featuring mesoporous channels and high surface areas. When utilized as an anode material for LIBs, the initial discharge specific capacity of the ZnS-NC electrode reaches an impressive value of 944 mA h g-1 at 1.0 A g-1, and even after 450 cycles, it maintains a reversible capacity of 597 mA h g-1. Compared with pure ZnS, the ZnS-NC composite exhibits significantly improved rate performance and cycling stability. This enhancement in Li-storage performance can be attributed to a synergistic effect within the ZnS-NC composite, which arises from the large exposed active site area, efficient ion/electron transfer, and strong interaction between the ZnS nanoparticles and the carbon framework. Overall, this work presents an eco-friendly approach for developing metal sulfide-carbon composites with exceptional potential for energy storage applications.

4.
Angew Chem Int Ed Engl ; 62(38): e202307470, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37523147

ABSTRACT

Borocarbonitride (BCN) materials are newly developed oxidative dehydrogenation catalysts that can efficiently convert alkanes to alkenes. However, BCN materials tend to form bulky B2 O3 due to over-oxidation at the high reaction temperature, resulting in significant deactivation. Here, we report a series of super stable BCN nanosheets for the oxidative dehydrogenation of propane (ODHP) reaction. The catalytic performance of the BCN nanosheets can be easily regulated by changing the guanine dosage. The control experiment and structural characterization indicate that the introduction of a suitable amount of carbon could prevent the formation of excessive B2 O3 from BCN materials and maintain the 2D skeleton at a high temperature of 520 °C. The best-performing catalyst BCN exhibits 81.9 % selectivity towards olefins with a stable propane conversion of 35.8 %, and the propene productivity reaches 16.2 mmol h-1 g-1 , which is much better than hexagonal BN (h-BN) catalysts. Density functional theory calculation results show that the presence of dispersed rather than aggregated carbon atoms can significantly affect the electronic microenvironment of h-BN, thereby boosting the catalytic activity of BCN.

5.
J Colloid Interface Sci ; 646: 863-871, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37235932

ABSTRACT

Single-atom copper (Cu) embedded within carbon catalysts have demonstrated significant potential in the electrochemical reduction of carbon dioxide (CO2) into valuable chemicals and fuels. Herein, we develop a straightforward and template-free strategy for synthesizing atomically dispersed CuNC catalysts (CuG) by annealing the self-assembled guanosine. The CuG catalysts display two-dimensional morphology, tunable pore size and large surface areas that can be adjusted by changing carbonization temperature. Spherical aberration-corrected transmission electron microscopy reveals that single-atom Cu are homogeneously dispersed on the surface of carbon nanosheets. The optimum CuG-1000 catalysts achieve a high CO Faradaic efficiency (FEco) up to 99% and a high CO current density of 6.53 mA cm-2 (-0.65 V vs. RHE). Besides, the flow cell test of CuG-1000 shows a high current density up to 25.2 mA cm-2 and the FEco still exceeded 91% after more than 20 h of testing. Specifically, the existence of Cu-N3-C active sites was proved by extended X-ray absorption fine structure (EXAFS). Density functional theory evidences that tricoordinated copper with N can largely regulate the adsorption and desorption of key intermediates by transferring electrons to *COOH through Cu atoms, thereby improving selectivity toward CO. This work demonstrates the active origin of CuNC catalysts in CO2 electroreduction and offers a blueprint to construct atomically dispersed transition site catalysts by supramolecular self-assembly strategy.

6.
Dalton Trans ; 52(19): 6267-6272, 2023 May 16.
Article in English | MEDLINE | ID: mdl-37083211

ABSTRACT

Developing low-cost and highly efficient electrocatalysts for the hydrogen evolution reaction (HER) has stimulated extensive interest. Molybdenum carbide materials have been proposed as promising alternatives to noble platinum-based catalysts due to their earth abundance and tunable physicochemical characteristics. Here, we report Mo2C@NC/Mo2C hollow microspheres composed of a ß-Mo2C core and small ß-Mo2C particles embedded within a nitrogen-doped carbon shell and prepared using guanosine and hexaammonium molybdate as precursors via a hydrothermal self-assembly process, which results in outstanding catalytic activity and fast kinetics in hydrogen evolution in both acidic and alkaline solutions. The significant activity improvement of Mo2C@NC/Mo2C can be attributed to the large ratio of exposed active sites and abundant interfacial structures. This work provides a new template-free strategy for the design of a highly active Mo2C@NC/Mo2C hollow microsphere HER catalyst.

7.
Phys Chem Chem Phys ; 25(13): 9198-9207, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36919363

ABSTRACT

Bi-based materials are promising electrocatalysts for CO2 reduction but one of the key technological hurdles is the design of stable, active and affordable Bi-based catalysts over a wide potential range. Herein, Bi2S3/CNTs nanocomposites are constructed by anchoring bismuth sulfide (Bi2S3) nanorods onto the multiwalled carbon nanotubes (CNTs) and utilizing them in electrocatalytic CO2 reduction. CNTs, as a support, not only guarantee the conductivity and dispersibility of Bi2S3 nanorods but also improve the electrolyte infiltration and optimize the electronic structure of the Bi2S3. As expected, the Bi2S3/CNTs nanocomposite exhibits a faradaic efficiency for HCOO- (FEHCOO-) of 99.3% with a current density of -20.3 mA cm-2 at -0.91 V vs. RHE. The FEHCOO- is stably maintained at over > 91% in a wide potential window from -0.71 V to -1.31 V. Theoretical calculation analyses reveal that the strong interaction between Bi2S3 and CNTs is conductive to decreasing the energy barrier of *OCHO, stabilizing the intermediate *OCHO, and inhibiting the hydrogen evolution reaction. The current study provides an insightful understanding of the mechanism of the CO2 electroreduction reaction, and paves a new way for developing superior and affordable electrocatalysts.

8.
J Colloid Interface Sci ; 638: 291-299, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36739747

ABSTRACT

The oxidative dehydrogenation (ODH) of alkane is one of the most attractive routes in alkane production because of its favourable thermodynamic characteristic. Nitrogen-doped nanocarbons have demonstrated great potential in this reaction due to its cost-effective, high catalytic activity and stability. However, the influence of nitrogen on the catalytic properties of carbon materials is poorly understood due to the complexities of surface oxygen and nitrogen functional groups. Here we derive the performance descriptor that account for the nitrogen-dependent carbocatalysis in ODH reaction. To achieve this, we designed a set of nitrogen-doped nanocarbon materials with tunable nitrogen species by hydrothermal carbonization (HTC) treatment of the biomass folic acid (FA), which are applied in ODH of ethylbenzene. Among them, FA-180-1000 catalyst can achieve high ethylbenzene conversion (up to ∼62 %) and styrene selectivity (∼87 %), outperforming other HTC carbon-based catalysts. Structural characterizations and kinetic analyses revealed that nitrogen doping strongly interferes the charge polarization of CO site via electron transfer between CO, and nitrogen (mainly pyridine nitrogen and graphitic nitrogen) thus enhancing the reactivity of CO. Furthermore, the induction period during reaction process can be shortened by applying of sulfuric acid-assisted HTC method for constructing nitrogen-doped carbon catalyst with low crystallinity. The present work provides new insights into the contribution of nitrogen doping to the ODH reaction of carbon nanocatalysts, as well as guidance for the rational design of carbon catalysts for the conversion of hydrocarbons to high-value chemicals.

9.
Chem Commun (Camb) ; 59(19): 2783-2786, 2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36786684

ABSTRACT

We report the utilization of guanosine as a supramolecular precursor that unprecedentedly renders the formation of carbon-based multilayer materials with naturally high-level nitrogen doping. As a proof-of-concept, the porous carbon multilayers after anchoring 0.5 wt% Rh electrocatalysts displayed an excellent hydrogen evolution reaction activity.

10.
Small ; 18(51): e2205547, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36328713

ABSTRACT

Integrating the hydrogen evolution reaction (HER) and urea oxidation reaction (UOR) is an energy-saving approach for electrolytic H2 production. Here, hollow NiCoP nanoprisms are derived from Prussian blue analogues by a combined self-template coordination reaction and gas-phase phosphorization strategy. Benefiting from the strong electron interaction, unique hollow nanostructure, and enhanced mass/charge transfer, NiCoP nanoprisms display outstanding alkaline HER and UOR performance. Specifically, low potentials of -0.052, -0.115, and -0.159 V for HER and ultralow potentials of 1.30, 1.36, and 1.42 V for UOR at current densities of 10, 50, and 100 mA cm-2 are obtained. Moreover, in a urea-assisted water electrolysis system, NiCoP nanoprisms only require cell voltages of 1.36, 1.49, and 1.57 V to offer current densities of 10, 50, and 100 mA cm-2 , about 170, 180, and 200 mV less than the traditional water electrolysis. Theoretical calculations indicate the Co substitution in Ni2 P promotes the adsorption and dissociation of water molecules, optimizes the desorption energy of active hydrogen atoms, and enhances the adsorption of urea molecules, thus accelerating the kinetics of HER and UOR. This work facilitates the application of hollow bimetallic phosphides in electrochemical preparation of clean energy and provides a successful paradigm for urea-rich wastewater electrolysis.

11.
Phys Chem Chem Phys ; 24(47): 28895-28902, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36441627

ABSTRACT

Hydrogen activation and the consequent catalytic hydrogenation of nitrobenzene on metal-free catalysts have been an attractive alternative to traditional metal-based catalytic process. Here we design a type of B/P co-doped nanocarbon (BPC) catalyst via the engineering of frustrated Lewis pairs (FLPs) on nanocarbons. It exhibits excellent catalytic activity with 97% conversion and 98% selectivity in hydrogen assisted hydrogenation of nitrobenzene to form aniline, which is superior to that of pure carbon and single B or P doped carbon materials. Structural characterizations, kinetic measurements and density functional theory (DFT) results indicate that Lewis acid ("B" center) and Lewis base ("P" center) engineered FLP sites on the BPC are responsible for the formation of aniline, and the moderate P/B ratio is important in promoting the hydrogenation activity. Moreover, we put forward a possible reaction mechanism and point out the key factors in determining the reactivity for this reaction. The current work provides a facile strategy for developing highly efficient hydrogenation catalysts.

12.
J Colloid Interface Sci ; 607(Pt 1): 203-209, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34500419

ABSTRACT

Water oxidation reaction (WOR) is the heart for overall water splitting owing to its sluggish kinetics. Herein, carbon quantum dots (CQDs) are studied as co-catalyst to promote WOR by loading them on NiTiO3 (NTO) photocatalyst. The performance can be obtained in a fold of 7 compared with pristine NTO in power-based photocatalytic system, and strong stability has received with preserving the output for at least 10 h. The CQDs have also demonstrated to load on NTO based photoanode for WOR, and a 6 times increasement has realized. In-situ characterizations have acquired to study the roles of CQDs for WOR and found that CQDs can facilitate the chemical adsorption of water molecules, and meanwhile promote the formation of hydroxyl radical as transition states of WOR. This demonstration presents a clue to understand the role of carbon in photocatalytic system to promote WOR and encourage its uses for advanced photoredox catalytic reactions.

13.
J Colloid Interface Sci ; 608(Pt 3): 2801-2808, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34785046

ABSTRACT

Developing highly active and stable nanocarbon catalysts for selective oxidation reactions has attracted much attention due to their potential as an alternative to traditional metal-based or noble metal catalysts. However, the nature of active sites and the reaction mechanism of nanocarbon catalysts for oxidation reactions still remains largely unknown, which hinders the rational design and development of highly efficient carbon-based catalysts. Here we report a facile strategy for the synthesis of boron and nitrogen co-doped carbon nanosheet material (BNC), which exhibits excellent catalytic activity with 91% conversion and 99% selectivity in selective oxidation of benzyl alcohol into benzaldehyde, superior to those of traditional carbon materials (oxidized carbon nanotubes, graphites and commercial nanocarbons). Structural characterizations and kinetic measurements are studied to clarify the active site, in which phenolic hydroxyl on BNC is responsible for the production of benzaldehyde. Meanwhile, we put forward a possible reaction mechanism and point out the key factors in determining the reactivity for this reaction. Therefore, the present work provides new insight into structure-function relationships, paving the way for the development of highly efficient nanocarbon catalysts.


Subject(s)
Benzyl Alcohol , Nanotubes, Carbon , Catalysis , Catalytic Domain , Oxidation-Reduction
14.
Nat Commun ; 12(1): 6542, 2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34764285

ABSTRACT

Styrene is one of the most important industrial monomers and is traditionally synthesized via the dehydrogenation of ethylbenzene. Here, we report a photo-induced fluorination technique to generate an oxidative dehydrogenation catalyst through the controlled grafting of fluorine atoms on nanodiamonds. The obtained catalyst has a fabulous performance with ethylbenzene conversion reaching 70% as well as styrene yields of 63% and selectivity over 90% on a stream of 400 °C, which outperforms other equivalent benchmarks as well as the industrial K-Fe catalysts (with a styrene yield of 50% even at a much higher temperature of ca. 600 °C). Moreover, the yield of styrene remains above 50% after a 500 h test. Experimental characterizations and density functional theory calculations reveal that the fluorine functionalization not only promotes the conversion of sp3 to sp2 carbon to generate graphitic layers but also stimulates and increases the active sites (ketonic C=O). This photo-induced surface fluorination strategy facilitates innovative breakthroughs on the carbocatalysis for the oxidative dehydrogenation of other arenes.

15.
Phys Chem Chem Phys ; 23(26): 14276-14283, 2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34159984

ABSTRACT

Non-noble metal single-atom catalysts hold great promise in selective oxidation reactions, although the progress is still unsatisfactory because of the synthesis challenge and the lack of mechanistic interpretations. Herein, we develop a biomolecule-based strategy to synthesize isolated Co single atom site catalysts by one-step pyrolysis of guanosine and Co precursors. Due to the abundant hydrogen bonding and π-π interaction of guanosine, the as-synthesized Co-N-C catalysts present a hierarchical porous two-dimensional (2D) nanostructure with an ultrahigh specific surface area, large pore volume, and high density of cobalt single atoms. Aberration-corrected electron microscopy and X-ray photoelectron spectroscopy reveal that Co species are present as isolated single sites and stabilized by nitrogen-doped carbon nanosheets. These characteristics make Co-GS-900 suitable as an efficient catalyst for selective oxidation of aromatic alkanes. For oxidation of ethylbenzene, Co-GS-900 exhibits a superior performance f with 91% conversion and 98% selectivity of acetophenone.

16.
Chemosphere ; 274: 129799, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33545593

ABSTRACT

Strive to develop the interaction and efficient co-catalysts is one of the vital projects in realizing hybrid photocatalytic systems for water remediation. In this work, p-type porous Co3O4 was embedded onto n-type vertical TiO2 nanotube via an in-situ thermal etching method. ZIF-67 was employed as the structural template for Co3O4, which then augmented the light harvesting ability of the resultant photocatalyst. Such improvement was prompted by the light reflecting and directing attributes of porous Co3O4. Therefore, a remarkable MB removal rate was attained under sunlight irradiation, with superoxide radical being identified as the major reactive species. Photoelectric properties evaluation also verified that the p-n heterojunction developed herein exhibits outstanding charges separation ability with low impedance, particularly under light irradiation. This work highlights the idea on coupling both porous and p-n heterojunction engineering in augmenting photoactivity of catalyst, while offering insights in such structure-mediating approach.


Subject(s)
Nanotubes , Water , Porosity , Titanium
17.
Nanomaterials (Basel) ; 10(12)2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33334081

ABSTRACT

The paper describes a new kind of ionogel with both good mechanical strength and high conductivity synthesized by confining the ionic liquid (IL) 1-butyl-3-methylimidazolium bis(trifluoromethane sulfonyl)imide ([Bmim][NTf2]) within an organic-inorganic hybrid host. The organic-inorganic host network was synthesized by the reaction of methyltrimethoxysilane (MTMS), tetraethoxysilane (TEOS), and methyl methacrylate (MMA) in the presence of a coupling agent, offering the good mechanical strength and rapid shape recovery of the final products. The silane coupling agent 3-methacryloxypropyltrimethoxysilane (KH-570) plays an important role in improving the mechanical strength of the inorganic-organic hybrid, because it covalently connected the organic component MMA and the inorganic component SiO2. Both the thermal stability and mechanical strength of the ionogel significantly increased by the addition of IL. The immobilization of [Bmim][NTf2] within the ionogel provided the final ionogel with an ionic conductivity as high as ca. 0.04 S cm-1 at 50 °C. Moreover, the hybrid ionogel can be modified with organosilica-modified carbon dots within the network to yield a transparent and flexible ionogel with strong excitation-dependent emission between 400 and 800 nm. The approach is, therefore, a blueprint for the construction of next-generation multifunctional ionogels.

18.
Nanoscale ; 12(39): 20220-20229, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33000831

ABSTRACT

Hematite is a promising candidate as photoanode for solar-driven water splitting, with a theoretically predicted maximum solar-to-hydrogen conversion efficiency of ∼16%. However, the interfacial charge transfer and recombination greatly limits its activity for photoelectrochemical water splitting. Carbon dots exhibit great potential in photoelectrochemical water splitting for solar to hydrogen conversion as photosensitisers and co-catalysts. Here we developed a novel carbon underlayer from low-cost and environmental-friendly carbon dots through a facile hydrothermal process, introduced between the fluorine-doped tin oxide conducting substrate and hematite photoanodes. This led to a remarkable enhancement in the photocurrent density. Owing to the triple functional role of carbon dots underlayer in improving the interfacial properties of FTO/hematite and providing carbon source for the overlayer as well as the change in the iron oxidation state, the bulk and interfacial charge transfer dynamics of hematite are significantly enhanced, and consequently led to a remarkable enhancement in the photocurrent density. The results revealed a substantial improvement in the charge transfer rate, yielding a charge transfer efficiency of up to 80% at 1.25 V vs. RHE. In addition, a significant enhancement in the lifetime of photogenerated electrons and an increased carrier density were observed for the hematite photoanodes modified with a carbon underlayer, confirming that the use of sustainable carbon nanomaterials is an effective strategy to boost the photoelectrochemical performance of semiconductors for energy conversion.

19.
Angew Chem Int Ed Engl ; 59(52): 23641-23648, 2020 Dec 21.
Article in English | MEDLINE | ID: mdl-32926542

ABSTRACT

It is still a great challenge to achieve high selectivity of CH4 in CO2 electroreduction reactions (CO2 RR) because of the similar reduction potentials of possible products and the sluggish kinetics for CO2 activation. Stabilizing key reaction intermediates by single type of active sites supported on porous conductive material is crucial to achieve high selectivity for single product such as CH4 . Here, Cu2 O(111) quantum dots with an average size of 3.5 nm are in situ synthesized on a porous conductive copper-based metal-organic framework (CuHHTP), exhibiting high selectivity of 73 % towards CH4 with partial current density of 10.8 mA cm-2 at -1.4 V vs. RHE (reversible hydrogen electrode) in CO2 RR. Operando infrared spectroscopy and DFT calculations reveal that the key intermediates (such as *CH2 O and *OCH3 ) involved in the pathway of CH4 formation are stabilized by the single active Cu2 O(111) and hydrogen bonding, thus generating CH4 instead of CO.

20.
Sci Adv ; 6(26): eaba5778, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32637613

ABSTRACT

Borocarbonitrides (BCNs) have emerged as highly selective catalysts for the oxidative dehydrogenation (ODH) reaction. However, there is a lack of in-depth understanding of the catalytic mechanism over BCN catalysts due to the complexity of the surface oxygen functional groups. Here, BCN nanotubes with multiple active sites are synthesized for oxygen-assisted methanol conversion reaction. The catalyst shows a notable activity improvement for methanol conversion (29%) with excellent selectivity to formaldehyde (54%). Kinetic measurements indicate that carboxylic acid groups on BCN are responsible for the formation of dimethyl ether, while the redox catalysis to formaldehyde occurs on both ketonic carbonyl and boron hydroxyl (B─OH) sites. The ODH reaction pathway on the B─OH site is further revealed by in situ infrared, x-ray absorption spectra, and density functional theory. The present work provides physical-chemical insights into the functional mechanism of BCN catalysts, paving the way for further development of the underexplored nonmetallic catalytic systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...