Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Int J Med Sci ; 21(7): 1274-1279, 2024.
Article in English | MEDLINE | ID: mdl-38818467

ABSTRACT

Objective: Citicoline can be used to reduce acute ischemic stroke injury via venous infusion, however, its protective effects in the brain extracellular space remain largely unknown. Herein, we investigated the brain protective effects of citicoline administered via the brain extracellular space and sought precise effective dosage range that can protect against ischemic injury after experimental ischemic stroke in rats. Methods: Fifty-six Sprague-Dawley rats were randomly divided into control, intraperitoneal (IP), caudate-putamen (CPu)-25, CPu-40, CPu-50, CPu-60 and CPu-75 groups based on the infusion site and concentration of citicoline. Two hours after the administration of citicoline, the rats were subjected to a permanent middle cerebral artery occlusion to mimic acute ischemic stroke. Then, the brain infarct volume in rats after stroke was measured and their neurological deficiency was evaluated to explain the protective effects and effective dosage range of citicoline. Results: Compared to the control and IP groups, brain infarct volume of rats in CPu-40, CPu-50, and CPu-60 groups is significant smaller. Furthermore, the brain infarct volume of rats in CPu-50 is the least. Conclusions: Here, we showed that citicoline can decrease the brain infarct volume, thus protecting the brain from acute ischemic stroke injury. We also found that the appropriate effective citicoline dose delivered via the brain extracellular space is 50 mM. Our study provides novel insights into the precise treatment of acute ischemic stroke by citicoline via the brain extracellular space, further guiding the treatment of brain disease.


Subject(s)
Brain , Cytidine Diphosphate Choline , Disease Models, Animal , Extracellular Space , Ischemic Stroke , Rats, Sprague-Dawley , Animals , Cytidine Diphosphate Choline/administration & dosage , Cytidine Diphosphate Choline/pharmacology , Cytidine Diphosphate Choline/therapeutic use , Rats , Ischemic Stroke/drug therapy , Ischemic Stroke/pathology , Extracellular Space/drug effects , Male , Brain/drug effects , Brain/pathology , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/pharmacology , Humans , Infarction, Middle Cerebral Artery/drug therapy , Brain Ischemia/drug therapy , Brain Ischemia/pathology
2.
Phys Med Biol ; 69(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38636495

ABSTRACT

Deep neural networks (DNNs) have been widely applied in medical image classification and achieve remarkable classification performance. These achievements heavily depend on large-scale accurately annotated training data. However, label noise is inevitably introduced in the medical image annotation, as the labeling process heavily relies on the expertise and experience of annotators. Meanwhile, DNNs suffer from overfitting noisy labels, degrading the performance of models. Therefore, in this work, we innovatively devise a noise-robust training approach to mitigate the adverse effects of noisy labels in medical image classification. Specifically, we incorporate contrastive learning and intra-group mixup attention strategies into vanilla supervised learning. The contrastive learning for feature extractor helps to enhance visual representation of DNNs. The intra-group mixup attention module constructs groups and assigns self-attention weights for group-wise samples, and subsequently interpolates massive noisy-suppressed samples through weighted mixup operation. We conduct comparative experiments on both synthetic and real-world noisy medical datasets under various noise levels. Rigorous experiments validate that our noise-robust method with contrastive learning and mixup attention can effectively handle with label noise, and is superior to state-of-the-art methods. An ablation study also shows that both components contribute to boost model performance. The proposed method demonstrates its capability of curb label noise and has certain potential toward real-world clinic applications.


Subject(s)
Image Processing, Computer-Assisted , Supervised Machine Learning , Image Processing, Computer-Assisted/methods , Humans , Signal-To-Noise Ratio , Neural Networks, Computer , Deep Learning , Diagnostic Imaging
3.
IEEE Trans Med Imaging ; PP2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687654

ABSTRACT

Accurate segmentation of anatomical structures in Computed Tomography (CT) images is crucial for clinical diagnosis, treatment planning, and disease monitoring. The present deep learning segmentation methods are hindered by factors such as data scale and model size. Inspired by how doctors identify tissues, we propose a novel approach, the Prior Category Network (PCNet), that boosts segmentation performance by leveraging prior knowledge between different categories of anatomical structures. Our PCNet comprises three key components: prior category prompt (PCP), hierarchy category system (HCS), and hierarchy category loss (HCL). PCP utilizes Contrastive Language-Image Pretraining (CLIP), along with attention modules, to systematically define the relationships between anatomical categories as identified by clinicians. HCS guides the segmentation model in distinguishing between specific organs, anatomical structures, and functional systems through hierarchical relationships. HCL serves as a consistency constraint, fortifying the directional guidance provided by HCS to enhance the segmentation model's accuracy and robustness. We conducted extensive experiments to validate the effectiveness of our approach, and the results indicate that PCNet can generate a high-performance, universal model for CT segmentation. The PCNet framework also demonstrates a significant transferability on multiple downstream tasks. The ablation experiments show that the methodology employed in constructing the HCS is of critical importance. The prompt and HCS can be accessed at https://github.com/YixinChen-AI/PCNet.

4.
Article in English | MEDLINE | ID: mdl-38500666

ABSTRACT

Dual-energy computed tomography (DECT) enables material decomposition for tissues and produces additional information for PET/CT imaging to potentially improve the characterization of diseases. PET-enabled DECT (PDECT) allows the generation of PET and DECT images simultaneously with a conventional PET/CT scanner without the need for a second x-ray CT scan. In PDECT, high-energy γ-ray CT (GCT) images at 511 keV are obtained from time-of-flight (TOF) PET data and are combined with the existing x-ray CT images to form DECT imaging. We have developed a kernel-based maximum-likelihood attenuation and activity (MLAA) method that uses x-ray CT images as a priori information for noise suppression. However, our previous studies focused on GCT image reconstruction at the PET image resolution which is coarser than the image resolution of the x-ray CT. In this work, we explored the feasibility of generating super-resolution GCT images at the corresponding CT resolution. The study was conducted using both phantom and patient scans acquired with the uEXPLORER total-body PET/CT system. GCT images at the PET resolution with a pixel size of 4.0 mm × 4.0 mm and at the CT resolution with a pixel size of 1.2 mm × 1.2 mm were reconstructed using both the standard MLAA and kernel MLAA methods. The results indicated that the GCT images at the CT resolution had sharper edges and revealed more structural details compared to the images reconstructed at the PET resolution. Furthermore, images from the kernel MLAA method showed substantially improved image quality compared to those obtained with the standard MLAA method.

5.
ArXiv ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38351944

ABSTRACT

X-ray computed tomography (CT) in PET/CT is commonly operated with a single energy, resulting in a limitation of lacking tissue composition information. Dual-energy (DE) spectral CT enables material decomposition by using two different x-ray energies and may be combined with PET for improved multimodality imaging, but would either require hardware upgrade or increase radiation dose due to the added second x-ray CT scan. Recently proposed PET-enabled DECT method allows dual-energy spectral imaging using a conventional PET/CT scanner without the need for a second x-ray CT scan. A gamma-ray CT (gCT) image at 511 keV can be generated from the existing time-of-flight PET data with the maximum-likelihood attenuation and activity (MLAA) approach and is then combined with the low-energy x-ray CT image to form dual-energy spectral imaging. To improve the image quality of gCT, a kernel MLAA method was further proposed by incorporating x-ray CT as a priori information. The concept of this PET-enabled DECT has been validated using simulation studies, but not yet with 3D real data. In this work, we developed a general open-source implementation for gCT reconstruction from PET data and use this implementation for the first real data validation with both a physical phantom study and a human subject study on a uEXPLORER total-body PET/CT system. These results have demonstrated the feasibility of this method for spectral imaging and material decomposition.

6.
Med Phys ; 50(10): 6047-6059, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37538038

ABSTRACT

BACKGROUND: Physiological motion, such as respiratory motion, has become a limiting factor in the spatial resolution of positron emission tomography (PET) imaging as the resolution of PET detectors continue to improve. Motion-induced misregistration between PET and CT images can also cause attenuation correction artifacts. Respiratory gating can be used to freeze the motion and to reduce motion induced artifacts. PURPOSE: In this study, we propose a robust data-driven approach using an unsupervised deep clustering network that employs an autoencoder (AE) to extract latent features for respiratory gating. METHODS: We first divide list-mode PET data into short-time frames. The short-time frame images are reconstructed without attenuation, scatter, or randoms correction to avoid attenuation mismatch artifacts and to reduce image reconstruction time. The deep AE is then trained using reconstructed short-time frame images to extract latent features for respiratory gating. No additional data are required for the AE training. K-means clustering is subsequently used to perform respiratory gating based on the latent features extracted by the deep AE. The effectiveness of our proposed Deep Clustering method was evaluated using physical phantom and real patient datasets. The performance was compared against phase gating based on an external signal (External) and image based principal component analysis (PCA) with K-means clustering (Image PCA). RESULTS: The proposed method produced gated images with higher contrast and sharper myocardium boundaries than those obtained using the External gating method and Image PCA. Quantitatively, the gated images generated by the proposed Deep Clustering method showed larger center of mass (COM) displacement and higher lesion contrast than those obtained using the other two methods. CONCLUSIONS: The effectiveness of our proposed method was validated using physical phantom and real patient data. The results showed our proposed framework could provide superior gating than the conventional External method and Image PCA.

7.
Front Cardiovasc Med ; 10: 1185890, 2023.
Article in English | MEDLINE | ID: mdl-37600060

ABSTRACT

Background: Ischemic stroke (IS) is one of the most common serious secondary diseases of atrial fibrillation (AF) within 1 year after its occurrence, both of which have manifestations of ischemia and hypoxia of the small vessels in the early phase of the condition. The fundus is a collection of capillaries, while the retina responds differently to light of different wavelengths. Predicting the risk of IS occurring secondary to AF, based on subtle differences in fundus images of different wavelengths, is yet to be explored. This study was conducted to predict the risk of IS occurring secondary to AF based on multi-spectrum fundus images using deep learning. Methods: A total of 150 AF participants without suffering from IS within 1 year after discharge and 100 IS participants with persistent arrhythmia symptoms or a history of AF diagnosis in the last year (defined as patients who would develop IS within 1 year after AF, based on fundus pathological manifestations generally prior to symptoms of the brain) were recruited. Fundus images at 548, 605, and 810 nm wavelengths were collected. Three classical deep neural network (DNN) models (Inception V3, ResNet50, SE50) were trained. Sociodemographic and selected routine clinical data were obtained. Results: The accuracy of all DNNs with the single-spectral or multi-spectral combination images at the three wavelengths as input reached above 78%. The IS detection performance of DNNs with 605 nm spectral images as input was relatively more stable than with the other wavelengths. The multi-spectral combination models acquired a higher area under the curve (AUC) scores than the single-spectral models. Conclusions: The probability of IS secondary to AF could be predicted based on multi-spectrum fundus images using deep learning, and combinations of multi-spectrum images improved the performance of DNNs. Acquiring different spectral fundus images is advantageous for the early prevention of cardiovascular and cerebrovascular diseases. The method in this study is a beneficial preliminary and initiative exploration for diseases that are difficult to predict the onset time such as IS.

8.
Front Oncol ; 12: 772392, 2022.
Article in English | MEDLINE | ID: mdl-35814447

ABSTRACT

Multimodality imaging is an advanced imaging tool for monitoring tumor behavior and therapy in vivo. In this study, we have developed a novel hybrid tri-modality system that includes two molecular imaging methods: positron emission computed tomography (PET) and fluorescence molecular imaging (FMI) and the anatomic imaging modality X-ray computed tomography (CT). The following paper describes the system development. Also, its imaging performance was tested in vitro (phantom) and in vivo, in Balb/c nude mice bearing a head and neck tumor xenograft treated with novel gene therapy [a new approach to the delivery of recombinant bacterial gene (IL-24-expressing strain)]. Using the tri-modality imaging system, we simultaneously monitored the therapeutic effect, including the apoptotic and necrotic induction within the tumor in vivo. The apoptotic induction was examined in real-time using an 18F-ML-10 tracer; the cell death was detected using ICG. A CT was used to evaluate the anatomical situation. An increased tumor inhibition (including tumor growth and tumor cell apoptosis) was observed in the treatment group compared to the control groups, which further confirmed the therapeutic effect of a new IL-24-expressing strain gene therapy on the tumor in vivo. By being able to offer concurrent morphological and functional information, our system is able to characterize malignant tissues more accurately. Therefore, this new tri-modality system (PET/CT/FMI) is an effective imaging tool for simultaneously investigating and monitoring tumor progression and therapy outcomes in vivo.

9.
Phys Med Biol ; 67(12)2022 06 10.
Article in English | MEDLINE | ID: mdl-35609588

ABSTRACT

Objective.This work assessed the relationship between image signal-to-noise ratio (SNR) and total-body noise-equivalent count rate (NECR)-for both non-time-of-flight (TOF) NECR and TOF-NECR-in a long uniform water cylinder and 14 healthy human subjects using the uEXPLORER total-body PET/CT scanner.Approach.A TOF-NEC expression was modified for list-mode PET data, and both the non-TOF NECR and TOF-NECR were compared using datasets from a long uniform water cylinder and 14 human subjects scanned up to 12 h after radiotracer injection.Main results.The TOF-NECR for the uniform water cylinder was found to be linearly proportional to the TOF-reconstructed image SNR2in the range of radioactivity concentrations studied, but not for non-TOF NECR as indicated by the reducedR2value. The results suggest that the use of TOF-NECR to estimate the count rate performance of TOF-enabled PET systems may be more appropriate for predicting the SNR of TOF-reconstructed images.Significance.Image quality in PET is commonly characterized by image SNR and, correspondingly, the NECR. While the use of NECR for predicting image quality in conventional PET systems is well-studied, the relationship between SNR and NECR has not been examined in detail in long axial field-of-view total-body PET systems, especially for human subjects. Furthermore, the current NEMA NU 2-2018 standard does not account for count rate performance gains due to TOF in the NECR evaluation. The relationship between image SNR and total-body NECR in long axial FOV PET was assessed for the first time using the uEXPLORER total-body PET/CT scanner.


Subject(s)
Fluorodeoxyglucose F18 , Positron-Emission Tomography , Humans , Positron Emission Tomography Computed Tomography , Positron-Emission Tomography/methods , Signal-To-Noise Ratio , Water
10.
Med Phys ; 48(9): 5244-5258, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34129690

ABSTRACT

PURPOSE: The developments of PET/CT and PET/MR scanners provide opportunities for improving PET image quality by using anatomical information. In this paper, we propose a novel co-learning three-dimensional (3D) convolutional neural network (CNN) to extract modality-specific features from PET/CT image pairs and integrate complementary features into an iterative reconstruction framework to improve PET image reconstruction. METHODS: We used a pretrained deep neural network to represent PET images. The network was trained using low-count PET and CT image pairs as inputs and high-count PET images as labels. This network was then incorporated into a constrained maximum likelihood framework to regularize PET image reconstruction. Two different network structures were investigated for the integration of anatomical information from CT images. One was a multichannel CNN, which treated PET and CT volumes as separate channels of the input. The other one was multibranch CNN, which implemented separate encoders for PET and CT images to extract latent features and fed the combined latent features into a decoder. Using computer-based Monte Carlo simulations and two real patient datasets, the proposed method has been compared with existing methods, including the maximum likelihood expectation maximization (MLEM) reconstruction, a kernel-based reconstruction and a CNN-based deep penalty method with and without anatomical guidance. RESULTS: Reconstructed images showed that the proposed constrained ML reconstruction approach produced higher quality images than the competing methods. The tumors in the lung region have higher contrast in the proposed constrained ML reconstruction than in the CNN-based deep penalty reconstruction. The image quality was further improved by incorporating the anatomical information. Moreover, the liver standard deviation was lower in the proposed approach than all the competing methods at a matched lesion contrast. CONCLUSIONS: The supervised co-learning strategy can improve the performance of constrained maximum likelihood reconstruction. Compared with existing techniques, the proposed method produced a better lesion contrast versus background standard deviation trade-off curve, which can potentially improve lesion detection.


Subject(s)
Image Processing, Computer-Assisted , Positron Emission Tomography Computed Tomography , Humans , Neural Networks, Computer , Positron-Emission Tomography , Tomography, X-Ray Computed
11.
Phys Med Biol ; 66(6): 065016, 2021 03 09.
Article in English | MEDLINE | ID: mdl-33571980

ABSTRACT

With the goal of developing a total-body small-animal PET system with a high spatial resolution of ∼0.5 mm and a high sensitivity >10% for mouse/rat studies, we simulated four scanners using the graphical processing unit-based Monte Carlo simulation package (gPET) and compared their performance in terms of spatial resolution and sensitivity. We also investigated the effect of depth-of-interaction (DOI) resolution on the spatial resolution. All the scanners are built upon 128 DOI encoding dual-ended readout detectors with lutetium yttrium oxyorthosilicate (LYSO) arrays arranged in 8 detector rings. The solid angle coverages of the four scanners are all ∼0.85 steradians. Each LYSO element has a cross-section of 0.44 × 0.44 mm2 and the pitch size of the LYSO arrays are all 0.5 mm. The four scanners can be divided into two groups: (1) H2RS110-C10 and H2RS110-C20 with 40 × 40 LYSO arrays, a ring diameter of 110 mm and axial length of 167 mm, and (2) H2RS160-C10 and H2RS160-C20 with 60 × 60 LYSO arrays, a diameter of 160 mm and axial length of 254 mm. C10 and C20 denote the crystal thickness of 10 and 20 mm, respectively. The simulation results show that all scanners have a spatial resolution better than 0.5 mm at the center of the field-of-view (FOV). The radial resolution strongly depends on the DOI resolution and radial offset, but not the axial resolution and tangential resolution. Comparing the C10 and C20 designs, the former provides better resolution, especially at positions away from the center of the FOV, whereas the latter has 2× higher sensitivity (∼10% versus ∼20%). This simulation study provides evidence that the 110 mm systems are a good choice for total-body mouse studies at a lower cost, whereas the 160 mm systems are suited for both total-body mouse and rat studies.


Subject(s)
Equipment Design , Lutetium/chemistry , Positron-Emission Tomography/instrumentation , Positron-Emission Tomography/methods , Silicates/chemistry , Animals , Computer Simulation , Mice , Monte Carlo Method , Rats , Sensitivity and Specificity
12.
Phys Med Biol ; 65(12): 125016, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32357352

ABSTRACT

Positron emission tomography (PET) is an ill-posed inverse problem and suffers high noise due to limited number of detected events. Prior information can be used to improve the quality of reconstructed PET images. Deep neural networks have also been applied to regularized image reconstruction. One method is to use a pretrained denoising neural network to represent the PET image and to perform a constrained maximum likelihood estimation. In this work, we propose to use a generative adversarial network (GAN) to further improve the network performance. We also modify the objective function to include a data-matching term on the network input. Experimental studies using computer-based Monte Carlo simulations and real patient datasets demonstrate that the proposed method leads to noticeable improvements over the kernel-based and U-net-based regularization methods in terms of lesion contrast recovery versus background noise trade-offs.


Subject(s)
Image Processing, Computer-Assisted/methods , Neural Networks, Computer , Positron-Emission Tomography , Computer Simulation , Databases, Factual , Humans , Monte Carlo Method
13.
Proc Natl Acad Sci U S A ; 117(5): 2265-2267, 2020 02 04.
Article in English | MEDLINE | ID: mdl-31964808

ABSTRACT

A 194-cm-long total-body positron emission tomography/computed tomography (PET/CT) scanner (uEXPLORER), has been constructed to offer a transformative platform for human radiotracer imaging in clinical research and healthcare. Its total-body coverage and exceptional sensitivity provide opportunities for innovative studies of physiology, biochemistry, and pharmacology. The objective of this study is to develop a method to perform ultrahigh (100 ms) temporal resolution dynamic PET imaging by combining advanced dynamic image reconstruction paradigms with the uEXPLORER scanner. We aim to capture the fast dynamics of initial radiotracer distribution, as well as cardiac motion, in the human body. The results show that we can visualize radiotracer transport in the body on timescales of 100 ms and obtain motion-frozen images with superior image quality compared to conventional methods. The proposed method has applications in studying fast tracer dynamics, such as blood flow and the dynamic response to neural modulation, as well as performing real-time motion tracking (e.g., cardiac and respiratory motion, and gross body motion) without any external monitoring device (e.g., electrocardiogram, breathing belt, or optical trackers).


Subject(s)
Molecular Imaging/instrumentation , Positron Emission Tomography Computed Tomography/instrumentation , Whole Body Imaging/instrumentation , Fluorodeoxyglucose F18/administration & dosage , Fluorodeoxyglucose F18/pharmacokinetics , Humans , Image Processing, Computer-Assisted , Motion , Radioactive Tracers
14.
J Nucl Med ; 61(2): 285-291, 2020 02.
Article in English | MEDLINE | ID: mdl-31302637

ABSTRACT

The world's first 194-cm-long total-body PET/CT scanner (uEXPLORER) has been built by the EXPLORER Consortium to offer a transformative platform for human molecular imaging in clinical research and health care. Its total-body coverage and ultra-high sensitivity provide opportunities for more accurate tracer kinetic analysis in studies of physiology, biochemistry, and pharmacology. The objective of this study was to demonstrate the capability of total-body parametric imaging and to quantify the improvement in image quality and kinetic parameter estimation by direct and kernel reconstruction of the uEXPLORER data. Methods: We developed quantitative parametric image reconstruction methods for kinetic analysis and used them to analyze the first human dynamic total-body PET study. A healthy female subject was recruited, and a 1-h dynamic scan was acquired during and after an intravenous injection of 256 MBq of 18F-FDG. Dynamic data were reconstructed using a 3-dimensional time-of-flight list-mode ordered-subsets expectation maximization (OSEM) algorithm and a kernel-based algorithm with all quantitative corrections implemented in the forward model. The Patlak graphical model was used to analyze the 18F-FDG kinetics in the whole body. The input function was extracted from a region over the descending aorta. For comparison, indirect Patlak analysis from reconstructed frames and direct reconstruction of parametric images from the list-mode data were obtained for the last 30 min of data. Results: Images reconstructed by OSEM showed good quality with low noise, even for the 1-s frames. The image quality was further improved using the kernel method. Total-body Patlak parametric images were obtained using either indirect estimation or direct reconstruction. The direct reconstruction method improved the parametric image quality, having a better contrast-versus-noise tradeoff than the indirect method, with a 2- to 3-fold variance reduction. The kernel-based indirect Patlak method offered image quality similar to the direct Patlak method, with less computation time and faster convergence. Conclusion: This study demonstrated the capability of total-body parametric imaging using the uEXPLORER. Furthermore, the results showed the benefits of kernel-regularized reconstruction and direct parametric reconstruction. Both can achieve superior image quality for tracer kinetic studies compared with the conventional indirect OSEM for total-body imaging.


Subject(s)
Image Processing, Computer-Assisted/methods , Positron Emission Tomography Computed Tomography , Whole Body Imaging , Humans
15.
J BUON ; 24(6): 2560-2569, 2019.
Article in English | MEDLINE | ID: mdl-31983133

ABSTRACT

PURPOSE: This research proposes a method with specific procedure guideline for clinical PET/CT image quality assessment according to physicians' behavior of image interpretation and explore the relationship between image quality and image systems with similar physical performance. METHODS: Clinical PET/CT were divided according to body location: brain, chest, abdomen and pelvic cavity. We explored the lesions and suspicious regions where radiologists concerned most through eye-tracker and behavior observation study to generate an assessment checklist. Fifty-five patients who were statistically consistent in age, weight and height were studied. Thirty-seven were scanned with an experimental scanner A and control systems B or C because their clinical pathways required PET/CT examinations at short intervals, the other 18 were scanned with scanners A and C. The grade of every system's PET, CT and PET/CT image performance on the four parts was calculated by subtraction of mean value and variance between experimental and control systems. RESULTS: The scoring checklist was set for PET, CT and PET/CT images in four parts respectively, and a standard procedure guideline was formulated for assessment. Using assessment criteria, the statistical results objectively reflected certain systems' superiority on certain modalities and certain parts of the body. CONCLUSION: Our criteria for clinical PET/CT image quality assessment and comparison were efficient.


Subject(s)
Image Interpretation, Computer-Assisted/standards , Neoplasms/diagnostic imaging , Neoplasms/pathology , Physical Functional Performance , Positron Emission Tomography Computed Tomography/methods , Quality Assurance, Health Care/standards , Radiation Oncology/standards , Adult , Aged , Algorithms , Female , Humans , Image Interpretation, Computer-Assisted/methods , Male , Middle Aged , Observer Variation , Prognosis , Reproducibility of Results , Young Adult
16.
Sensors (Basel) ; 16(6)2016 May 27.
Article in English | MEDLINE | ID: mdl-27240368

ABSTRACT

In this paper, we propose a wobbling method to correct bad pixels in cadmium zinc telluride (CZT) detectors, using information of related images. We build up an automated device that realizes the wobbling correction for small animal Single Photon Emission Computed Tomography (SPECT) imaging. The wobbling correction method is applied to various constellations of defective pixels. The corrected images are compared with the results of conventional interpolation method, and the correction effectiveness is evaluated quantitatively using the factor of peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). In summary, the proposed wobbling method, equipped with the automatic mechanical system, provides a better image quality for correcting defective pixels, which could be used for all pixelated detectors for molecular imaging.

SELECTION OF CITATIONS
SEARCH DETAIL
...