Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 612: 146-155, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-34992015

ABSTRACT

Ultra-thin microwave absorbers have been urgently demanded for electromagnetic applications in recent years. Herein, porous carbon with a "flower cluster" microstructure was synthesized from biomass waste (mango seeds) by a facile activation and carbonization method. The novel structure reduced the density and also improved the impedance matching, dipole polarization, and provided many carbon matrix-air interfaces for interfacial polarization, resulting in superior microwave absorption performance. At an ultra-thin thickness of 1.5 mm, extraordinary microwave absorption was achieved, with a reflection loss (RL) of -42 dB. The effective absorption bandwidth reached 4.2 GHz. The RL can be further improved to -68.4 dB by adjusting the amount of activator to manipulate the structure of porous carbon. In addition, from the simulated radar scattering results, the maximum reduction in the radar cross-section (RCS) reached 30.4 dBm2, which can greatly reduce the probability of equipment being detected by radar. This work provides a low-cost and high-performance microwave absorber for electromagnetic stealth technologies.


Subject(s)
Carbon , Radar , Biomass , Microwaves , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL
...