Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Plant Physiol Biochem ; 214: 108888, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38954944

ABSTRACT

Trichomes are specialized epidermal structures that protect plants from biotic and abiotic stresses by synthesizing, storing, and secreting defensive compounds. This study investigates the role of the Gossypium arboreum DNA topoisomerase VI subunit B gene (GaTOP6B) in trichome development and branching. Sequence alignment revealed a high similarity between GaTOP6B and AtTOP6B, suggesting a conserved function in trichome regulation. Although AtTOP6B acts as a positive regulator of trichome development, functional analyses showed contrasting effects: Virus-induced gene silencing (VIGS) of GaTOP6B in cotton increased trichome density, while its overexpression in Arabidopsis decreased trichome density but enhanced branching. This demonstrates that GaTOP6B negatively regulates trichome number, indicating species-specific roles in trichome initiation and branching between cotton and Arabidopsis. Overexpression of the GaTOP6B promotes jasmonic acid synthesis, which in turn inhibits the G1/S or G2/M transitions, stalling the cell cycle. On the other hand, it suppresses brassinolide synthesis and signaling while promoting cytokinin degradation, further inhibiting mitosis. These hormonal interactions facilitate the transition of cells from the mitotic cycle to the endoreduplication cycle. As the level of endoreduplication increases, trichomes develop an increased number of branches. These findings highlight GaTOP6B's critical role as a regulator of trichome development, providing new genetic targets for improving cotton varieties in terms of enhanced adaptability and resilience.

2.
Int J Mol Sci ; 25(4)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38396636

ABSTRACT

Organisms with three or more complete sets of chromosomes are designated as polyploids. Polyploidy serves as a crucial pathway in biological evolution and enriches species diversity, which is demonstrated to have significant advantages in coping with both biotic stressors (such as diseases and pests) and abiotic stressors (like extreme temperatures, drought, and salinity), particularly in the context of ongoing global climate deterioration, increased agrochemical use, and industrialization. Polyploid cultivars have been developed to achieve higher yields and improved product quality. Numerous studies have shown that polyploids exhibit substantial enhancements in cell size and structure, physiological and biochemical traits, gene expression, and epigenetic modifications compared to their diploid counterparts. However, some research also suggested that increased stress tolerance might not always be associated with polyploidy. Therefore, a more comprehensive and detailed investigation is essential to complete the underlying stress tolerance mechanisms of polyploids. Thus, this review summarizes the mechanism of polyploid formation, the polyploid biochemical tolerance mechanism of abiotic and biotic stressors, and molecular regulatory networks that confer polyploidy stress tolerance, which can shed light on the theoretical foundation for future research.


Subject(s)
Biological Evolution , Polyploidy , Humans , Phenotype , Diploidy
3.
Plant Cell Rep ; 43(1): 23, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38150101

ABSTRACT

KEY MESSAGE: Imbalanced chromosomes and cell cycle arrest, along with down-regulated genes in DNA damage repair and sperm cell differentiation, caused pollen abortion in synthetic allodiploid Brassica juncea hybrids. Interspecific hybridization is considered to be a major pathway for species formation and evolution in angiosperms, but the occurrence of pollen abortion in the hybrids is common, prompting us to recheck male gamete development in allodiploid hybrids after the initial combination of different genomes. Here, we investigated the several key meiotic and mitotic events during pollen development using the newly synthesised allodiploid B. juncea hybrids (AB, 2n = 2× = 18) as a model system. Our results demonstrated the partial synapsis and pairing of non-homologous chromosomes concurrent with chaotic spindle assembly, affected chromosome assortment and distribution during meiosis, which finally caused difference in genetic constitution amongst the final tetrads. The mitotic cell cycle arrest during microspore development resulted in the production of anucleate pollen cells. Transcription analysis showed that sets of key genes regulating cyclin (CYCA1;2 and CYCA2;3), DNA damage repair (DMC1, NBS1 and MMD1), and ubiquitin-proteasome pathway (SINAT4 and UBC) were largely downregulated at the early pollen meiosis stages, and those genes involved in sperm cell differentiation (DUO1, PIRL1, PIRL9 and LBD27) and pollen wall synthesis (PME48, VGDH11 and COBL10) were mostly repressed at the late pollen mitosis stages in the synthetic allodiploid B. juncea hybrids (AB). In conclusion, this study elucidated the related mechanisms affecting pollen fertility during male gametophyte development at the cytological and transcriptomic levels in the synthetic allodiploid B. juncea hybrids.


Subject(s)
Mustard Plant , Seeds , Female , Pregnancy , Humans , Mustard Plant/genetics , Fertility/genetics , Gene Expression Profiling , Transcriptome/genetics
4.
Int J Mol Sci ; 24(14)2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37511608

ABSTRACT

Clubroot is a soil-borne disease caused by Plasmodiophora brassicae, which can seriously affect the growth and production of cruciferous crops, especially Chinese cabbage crops, worldwide. At present, few studies have been conducted on the molecular mechanism of this disease's resistance response. In this experiment, we analyzed the bioinformation of bra-miR167a, constructed a silencing vector (STTM167a) and an overexpression vector (OE-miR167a), and transformed them to Arabidopsis to confirm the role of miR167a in the clubroot resistance mechanism of Arabidopsis. Afterwards, phenotype analysis and expression level analysis of key genes were conducted on transgenic plants. From the result, we found that the length and number of lateral roots of silence transgenic Arabidopsis STTM167a was higher than that of WT and OE-miR167a. In addition, the STTM167a transgenic Arabidopsis induced up-regulation of disease resistance-related genes (PR1, PR5, MPK3, and MPK6) at 3 days after inoculation. On the other hand, the auxin pathway genes (TIR1, AFB2, and AFB3), which are involved in maintaining the balance of auxin/IAA and auxin response factor (ARF), were down-regulated. These results indicate that bra-miR167a is negative to the development of lateral roots and auxins, but positive to the expression of resistance-related genes. This also means that the STTM167a can improve the resistance of clubroot by promoting lateral root development and the level of auxin, and can induce resistance-related genes by regulating its target genes. We found a positive correlation between miR167a and clubroot disease, which is a new clue for the prevention and treatment of clubroot disease.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Plasmodiophorida , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Indoleacetic Acids/metabolism , Plant Diseases/genetics , Plasmodiophorida/physiology
5.
Plants (Basel) ; 12(6)2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36987072

ABSTRACT

The SHPRH (SNF2, histone linker, PHD, RING, helicase) subfamily belonging to ATP-dependent chromatin remodeling factor is the effective tumor-suppressor, which can polyubiquitinate PCNA (proliferating cell nuclear antigen) and participate in post-replication repair in human. However, little is known about the functions of SHPRH proteins in plants. In this study, we identified a novel SHPRH member BrCHR39 and obtained BrCHR39-silenced transgenic Brassica rapa. In contrast to wild-type plants, transgenic Brassica plants exhibited a released apical dominance phenotype with semi-dwarfism and multiple lateral branches. Furthermore, a global alteration of DNA methylation in the main stem and bud appeared after silencing of BrCHR39. Based on the GO (gene ontology) functional annotation and KEGG (Kyoto encyclopedia of genes and genomes) pathway analysis, the plant hormone signal transduction pathway was clearly enriched. In particular, we found a significant increase in the methylation level of auxin-related genes in the stem, whereas auxin- and cytokinin-related genes were hypomethylated in the bud of transgenic plants. In addition, further qRT-PCR (quantitative real-time PCR) analysis revealed that DNA methylation level always had an opposite trend with gene expression level. Considered together, our findings indicated that suppression of BrCHR39 expression triggered the methylation divergence of hormone-related genes and subsequently affected transcription levels to regulate the apical dominance in Brassica rapa.

6.
Int J Mol Sci ; 24(3)2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36768734

ABSTRACT

Clubroot is an infectious root disease caused by Plasmodiophora brassicae in Brassica crops, which can cause immeasurable losses. We analyzed integrative transcriptome, small RNAs, degradome, and phytohormone comprehensively to explore the infection mechanism of P. brassicae. In this study, root samples of Brassica rapa resistant line material BrT24 (R-line) and susceptible line material Y510-9 (S-line) were collected at four different time points for cytological, transcriptome, miRNA, and degradome analyses. We found the critical period of disease resistance and infection were at 0-3 DAI (days after inoculation) and 9-20 DAI, respectively. Based on our finding, we further analyzed the data of 9 DAI vs. 20 DAI of S-line and predicted the key genes ARF8, NAC1, NAC4, TCP10, SPL14, REV, and AtHB, which were related to clubroot disease development and regulating disease resistance mechanisms. These genes are mainly related to auxin, cytokinin, jasmonic acid, and ethylene cycles. We proposed a regulatory model of plant hormones under the mRNA-miRNA regulation in the critical period of P. brassicae infection by using the present data of the integrative transcriptome, small RNAs, degradome, and phytohormone with our previously published results. Our integrative analysis provided new insights into the regulation relationship of miRNAs and plant hormones during the process of disease infection with P. brassicae.


Subject(s)
Brassica rapa , MicroRNAs , Plasmodiophorida , Brassica rapa/genetics , Plant Growth Regulators , Transcriptome , Disease Resistance/genetics , Plasmodiophorida/physiology , MicroRNAs/genetics , Plant Diseases/genetics
7.
Plants (Basel) ; 11(13)2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35807599

ABSTRACT

Newly synthetic autotetraploid rice shows lower pollen fertility and seed setting rate relative to diploid rice, which hinders its domestication and breeding. In this study, cytological analysis showed that at meiosis I stage, an unbalanced segregation of homologous chromosomes, occurred as well as an early degeneration of tapetal cells in autotetraploid rice. We identified 941 differentially expressed proteins (DEPs) in anthers (meiosis I), including 489 upregulated and 452 downregulated proteins. The DEPs identified were related to post-translational modifications such as protein ubiquitination. These modifications are related to chromatin remodeling and homologous recombination abnormalities during meiosis. In addition, proteins related to the pentose phosphate pathway (BGIOSGA016558, BGIOSGA022166, and BGIOSGA028743) were downregulated. This may be related to the failure of autotetraploid rice to provide the energy needed for cell development after polyploidization, which then ultimately leads to the early degradation of the tapetum. Moreover, we also found that proteins (BGIOSGA017346 and BGIOSGA027368) related to glutenin degradation were upregulated, indicating that a large loss of glutenin cannot provide nutrition for the development of tapetum, resulting in early degradation of tapetum. Taken together, these evidences may help to understand the differences in anther development between diploid and autotetraploid rice during meiosis.

8.
Plants (Basel) ; 11(13)2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35807717

ABSTRACT

The difficulty of genetic transformation has restricted research on functional genomics in cotton. Thus, a rapid and efficient method for gene overexpression that does not rely on genetic transformation is needed. Virus-based vectors offer a reasonable alternative for protein expression, as viruses can infect the host systemically to achieve expression and replication without transgene integration. Previously, a novel four-component barley stripe mosaic virus (BSMV) was reported to overexpress large fragments of target genes in plants over a long period of time, which greatly simplified the study of gene overexpression. However, whether this system can infect cotton and stably overexpress target genes has not yet been studied. In this study, we verified that this new BSMV system can infect cotton through seed imbibition and systemically overexpress large fragments of genes (up to 2340 bp) in cotton. The target gene that was fused with GFP was expressed at a high level in the roots, stems, and cotyledons of cotton seedlings, and stable fluorescence signals were detected in the cotton roots and leaves even after 4 weeks. Based on the BSMV overexpression system, the subcellular localization marker line of endogenous proteins localized in the nucleus, endoplasmic reticulum, plasma membrane, Golgi body, mitochondria, peroxisomes, tonoplast, and plastids were quickly established. The overexpression of a cotton Bile Acid Sodium Symporter GhBASS5 using the BSMV system indicated that GhBASS5 negatively regulated salt tolerance in cotton by transporting Na+ from underground to the shoots. Furthermore, multiple proteins were co-delivered, enabling co-localization and the study of protein-protein interactions through co-transformation. We also confirmed that the BSMV system can be used to conduct DNA-free gene editing in cotton by delivering split-SpCas9/sgRNA. Ultimately, the present work demonstrated that this BSMV system could be used as an efficient overexpression system for future cotton gene function research.

9.
Plants (Basel) ; 11(12)2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35736707

ABSTRACT

Polyploidy plays a crucial role in plant evolution and speciation. The development of male and female gametes is essential to the reproductive capacity of polyploids, but their gene expression pattern has not been fully explored in newly established polyploids. The present study aimed to reveal a detailed atlas of gene expression for gamete development in newly synthetic Brassica allohexaploids that are not naturally existing species. Comparative transcriptome profiling between developing anthers (staged from meiosis to mature pollen) and ovules (staged from meiosis to mature embryo sac) was performed using RNA-Seq analysis. A total of 8676, 9775 and 4553 upregulated differentially expressed genes (DEGs) were identified for the development of both gametes, for male-only, and for female-only gamete development, respectively, in the synthetic Brassica allohexaploids. By combining gene ontology (GO) biological process analysis and data from the published literature, we identified 37 candidate genes for DNA double-strand break formation, synapsis and the crossover of homologous recombination during male and female meiosis and 51 candidate genes for tapetum development, sporopollenin biosynthesis and pollen wall development in male gamete development. Furthermore, 23 candidate genes for mitotic progression, nuclear positioning and cell specification and development were enriched in female gamete development. This study lays a good foundation for revealing the molecular regulation of genes related to male and female gamete development in Brassica allohexaploids and provides more resourceful genetic information on the reproductive biology of Brassica polyploid breeding.

10.
Front Plant Sci ; 13: 1096804, 2022.
Article in English | MEDLINE | ID: mdl-36714744

ABSTRACT

Trigenomic Brassica allohexaploids (AABBCC, 2n = 6x = 54) have great potential in oilseed breeding and genetic diversity. However, Brassica allohexaploids do not exist naturally, and the underlying mechanism regulating pollen fertility in artificially synthesized Brassica allohexaploids is still unclear. In this study, synthetic Brassica allohexaploids were produced by crossing allotetraploid B. carinata (BBCC, 2n = 4x = 34) and diploid B. rapa (AA, 2n = 2x = 20), followed by chromosome doubling. The results showed that the pollen fertility was significantly reduced and the pollen structures were mostly distorted, but the nursing anther tapetum developed normally in the synthetic Brassica allohexaploids. Furthermore, the data showed that the meiotic events occurred irregularly with uneven chromosome segregation and microspore development appeared mostly abnormal. Transcription analysis showed that the upregulation of genes related to the negative regulation of flower development and the downregulation of genes related to chromosome segregation might play an essential role in reduction of pollen fertility in the Brassica allohexaploids. In conclusion, this study elucidated the related mechanisms affecting pollen fertility during male gametophytic development at the cytological and transcriptomic levels in the newly synthesized Brassica allohexaploids.

11.
Plant Cell Rep ; 40(12): 2421-2434, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34542669

ABSTRACT

KEY MESSAGE: Cytological observations of chromosome pairing showed that evolutionarily genome duplication might reshape non-homologous pairing during meiosis in haploid B. rapa. A vast number of flowering plants have evolutionarily undergone whole genome duplication (WGD) event. Typically, Brassica rapa is currently considered as an evolutionary mesohexaploid, which has more complicated genomic constitution among flowering plants. In this study, we demonstrated chromosome behaviors in haploid B. rapa to understand how meiosis proceeds in presence of a single homolog. The findings showed that a diploid-like chromosome pairing was generally adapted during meiosis in haploid B. rapa. Non-homologous chromosomes in haploid cells paired at a high-frequency at metaphase I, over 50% of examined meiocytes showed at least three pairs of bivalents then equally segregated at anaphase I during meiosis. The fluorescence immunostaining showed that the cytoskeletal configurations were mostly well-organized during meiosis. Moreover, the expressed genes identified at meiosis in floral development was rather similar between haploid and diploid B. rapa, especially the expression of known hallmark genes pivotal to chromosome synapsis and homologous recombination were mostly in haploid B. rapa. Whole-genome duplication evolutionarily homology of genomic segments might be an important reason for this phenomenon, which would reshape the first division course of meiosis and influence pollen development in plants.


Subject(s)
Brassica rapa/genetics , Chromosome Pairing , Meiosis , Pollen , Chromosomes, Plant , Gene Expression Regulation, Plant , Haploidy , Homologous Recombination , Pollen/genetics , Pollen/physiology
12.
Front Plant Sci ; 12: 671091, 2021.
Article in English | MEDLINE | ID: mdl-34149770

ABSTRACT

As a promising high-throughput reverse genetic tool in plants, virus-induced gene silencing (VIGS) has already begun to fulfill some of this promise in diverse aspects. However, review of the technological advancements about widely used VIGS system, tobacco rattle virus (TRV)-mediated gene silencing, needs timely updates. Hence, this article mainly reviews viral vector construction, inoculation method advances, important influential factors, and summarizes the recent applications in diverse plant species, thus providing a better understanding and advice for functional gene analysis related to crop improvements.

13.
Cell Biosci ; 11(1): 17, 2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33436051

ABSTRACT

BACKGROUND: Polyploidy is widespread in angiosperms and has a significant impact on plant evolution, diversity, and breeding program. However, the changes in the flower development regulatory mechanism in autotetraploid plants remains relatively limited. In this study, RNA-seq analysis was used to investigate changes in signaling pathways at flowering in autotetraploid Brassica rapa. RESULTS: The study findings showed that the key genes such as CO, CRY2, and FT which promotes floral formation were down-regulated, whereas floral transition genes FPF1 and FD were up-regulated in autotetraploid B. rapa. The data also demonstrated that the positive regulators GA1 and ELA1 in the gibberellin's biosynthesis pathway were negatively regulated by polyploidy in B. rapa. Furthermore, transcriptional factors (TFs) associated with flower development were significantly differentially expressed including the up-regulated CIB1 and AGL18, and the down-regulated AGL15 genes, and by working together such genes affected the expression of the down-stream flowering regulator FLOWERING LOCUS T in polyploid B. rapa. Compared with that in diploids autotetrapoid plants consist of differential expression within the signaling transduction pathway, with 13 TIFY gens up-regulated and 17 genes related to auxin pathway down-regulated. CONCLUSION: Therefore, polyploidy is more likely to integrate multiple signaling pathways to influence flowering in B. rapa after polyploidization. In general, the present results shed new light on our global understanding of flowering regulation in polyploid plants during breeding program.

14.
Front Plant Sci ; 12: 759623, 2021.
Article in English | MEDLINE | ID: mdl-34975941

ABSTRACT

Plasmodiophora brassicae, an obligate biotrophic pathogen-causing clubroot disease, can seriously affect Brassica crops worldwide, especially Chinese cabbage. Understanding the transcriptome and metabolome profiling changes during the infection of P. brassicae will provide key insights in understanding the defense mechanism in Brassica crops. In this study, we estimated the phytohormones using targeted metabolome assays and transcriptomic changes using RNA sequencing (RNA-seq) in the roots of resistant (BrT24) and susceptible (Y510-9) plants at 0, 3, 9, and 20 days after inoculation (DAI) with P. brassicae. Differentially expressed genes (DEGs) in resistant vs. susceptible lines across different time points were identified. The weighted gene co-expression network analysis of the DEGs revealed six pathways including "Plant-pathogen interaction" and "Plant hormone signal transduction" and 15 hub genes including pathogenic type III effector avirulence factor gene (RIN4) and auxin-responsive protein (IAA16) to be involved in plants immune response. Inhibition of Indoleacetic acid, cytokinin, jasmonate acid, and salicylic acid contents and changes in related gene expression in R-line may play important roles in regulation of clubroot resistance (CR). Based on the combined metabolome profiling and hormone-related transcriptomic responses, we propose a general model of hormone-mediated defense mechanism. This study definitely enhances our current understanding and paves the way for improving CR in Brassica rapa.

15.
Plant Physiol Biochem ; 148: 237-245, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31981876

ABSTRACT

The formation of allopolyploid crops basically depends on the successful interspecific hybridization and polyploidization, which generally involves in a combination of distinct but related genomes from independent species. But cytological analysis of these initially synthesized allohaploids immediately after genome merging is poorly explored in regards to anther and pollen development to date. In this study, Brassica trigenomic allohaploids (ABC) were produced to investigate the immediate effects of the genome combinations on pollen fertility during anther development via crosses between natural allotetraploid B. carinata (BBCC) and diploid B. rapa (AA). The results showed that in the synthetic Brassica allotriploids (ABC), the anther development was completely disrupted, and the pollen grains were mostly inviable with varied genetic complements. In addition, the meiosis course was aberrantly altered and eccentric chromosomal configurations including multivalent, bridges and lags occurred frequently during metaphase I to anaphase II. Genomic in situ hybridization (GISH) further revealed that B genome of homoeology was frequently apt to interact with A and C genomes, and cytoskeletal organizations was improperly distributed during meiosis in these synthetic Brassica allotriploids. Furthermore, we also confirmed that the expression of typical meiosis-related genes was obviously repressed during anther development in these Brassica allotriploids. Taken together, our results provide a detailed cytology for insights into pollen development in the synthetic allotriploid hybrids, which are conventionally considered as a useful genetic resource for polyploid Brassica breeding.


Subject(s)
Brassica , Meiosis , Pollen , Brassica/chemistry , Brassica/genetics , Chromosomes, Plant/genetics , Diploidy , Fertility/genetics , Genome, Plant , Humans , Hybridization, Genetic , Pollen/genetics , Polyploidy
16.
RNA Biol ; 14(12): 1799-1809, 2017 12 02.
Article in English | MEDLINE | ID: mdl-28837390

ABSTRACT

Amphioxus is the closest living proxy for exploring the evolutionary origin of the immune system in vertebrates. To understand the immune responses of amphioxus to lipopolysaccharide (LPS), 5 ribosomal RNA (rRNA)-depleted libraries of amphioxus were constructed, including one control (0 h) library and 4 treatment libraries at 6, 12, 24, and 48 h post-injection (hpi) with LPS. The transcriptome of Branchiostoma belcheri was analyzed using strand-specific RNA sequencing technology (RNA-seq). A total of 6161, 6665, 7969, and 6447 differentially expressed genes (DEGs) were detected at 6, 12, 24, and 48 hpi, respectively, compared with expression levels at 0 h. We identified amphioxus genes active during the acute-phase response to LPS at different time points after stimulation. Moreover, to better visualize the resolution phase of the immune process during immune response, we identified 6057 and 5235 DEGs at 48 hpi by comparing with 6 and 24 hpi, respectively. Through real-time quantitative PCR (qRT-PCR) analysis of 12 selected DEGs, we demonstrated the accuracy of the RNA-seq data in this study. Functional enrichment analysis of DEGs demonstrated that most terms were related to defense and immune responses, disease and infection, cell apoptosis, and metabolism and catalysis. Subsequently, we identified 1330, 485, 670, 911, and 1624 time-specific genes (TSGs) at 0, 6, 12, 24, and 48 hpi. Time-specific terms at each of 5 time points were primarily involved in development, immune signaling, signal transduction, DNA repair and stability, and metabolism and catalysis, respectively. As this is the first study to report the transcriptome of an organism with primitive immunity following LPS challenge at multiple time points, it provides gene expression information for further research into the evolution of immunity in vertebrates.


Subject(s)
Gene Expression Profiling , Lancelets/genetics , Lancelets/metabolism , Animals , Biological Evolution , Chromosome Mapping , Computational Biology/methods , Gene Ontology , Genome-Wide Association Study , Immunity, Innate/genetics , Lancelets/immunology , Lipopolysaccharides/immunology , Reproducibility of Results , Sequence Analysis, RNA
17.
Oncotarget ; 8(65): 108392-108405, 2017 Dec 12.
Article in English | MEDLINE | ID: mdl-29312538

ABSTRACT

The gene expression associated with immune response to bacteria/bacterial mimic has been extensively analyzed in amphioxus, but remains largely unknown about how gene are involved in the immune response to viral invasion at expression level. Here, we analyze the rRNA-depleted transcriptomes of Branchiostoma belcheri using strand-specific RNA-seq in response to the viral mimic, poly (I:C) (pIC). A total of 5,317 differentially expressed genes were detected at treatment group by comparing with control. The gene with the most significant expression changes (top 15) after pIC challenge and 7 immune-related categories involving 58 differently expressed genes were scrutinized. By functional enrichment analysis of differently expressed genes, gene ontology terms involving response to stress and stimulus, apoptosis, catabolic and metabolic processes and enzyme activity were overrepresented, and several pathways related to immune signaling, immune response, cancer, apoptosis, viral disease, metabolism were activated after pIC injection. A positive correlation between the qRT-PCR and strand-specific RNA-seq data confirmed the accuracy of the RNA-seq results. Additionally, the expression of genes encoding NLRC5, CASP1, CASP6, CYP450, CAT, and MDA5 were induced in B. belcheri under pIC challenge. Our experiments provide insight into the immune response of amphioxus to pIC and valuable gene expression information for studying the evolution of antiviral immunity in vertebrates.

18.
Proc Biol Sci ; 283(1841)2016 10 26.
Article in English | MEDLINE | ID: mdl-27798292

ABSTRACT

Mutation rates vary between species, between strains within species and between regions within a genome. What are the determinants of these forms of variation? Here, via parent-offspring sequencing of the peach we ask whether (i) woody perennials tend to have lower per unit time mutation rates compared to annuals, and (ii) hybrid strains have high mutation rates. Between a leaf from a low heterozygosity individual, derived from an intraspecific cross, to a leaf of its selfed progeny, the mutation rate is 7.77 × 10-9 point mutations per bp per generation, similar to Arabidopsis thaliana (7.0-7.4 × 10-9 point mutations per bp per generation). This suggests a low per unit time mutation rate as the generation time is much longer in peach. This is supported by our estimate of 9.48 × 10-9 point mutations per bp per generation from a 200-year-old low heterozygosity peach to its progeny. From a more highly heterozygous individual derived from an interspecific cross to its selfed progeny, the mutation rate is 1.38 × 10-8 mutations per site per generation, consistent with raised rates in hybrids. Our data thus suggest that (i) peach has an approximately order of magnitude lower mutation rate per unit time than Arabidopsis, consistent with reports of low evolutionary rates in woody perennials, and (ii) hybridization may, indeed, be associated with increased mutation rates as considered over a century ago.


Subject(s)
Chimera/genetics , Mutation Rate , Prunus persica/genetics , Arabidopsis
19.
Mol Genet Genomics ; 290(6): 2173-86, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26008792

ABSTRACT

Late blight caused by the oomycete Phytophthora infestans is one of the most severe threats to potato production worldwide. Numerous studies suggest that the most effective protective strategy against the disease would be to provide potato cultivars with durable resistance (R) genes. However, little is known about the origin and evolutional history of these durable R-genes in potato. Addressing this might foster better understanding of the dynamics of these genes in nature and provide clues for identifying potential candidate R-genes. Here, a systematic survey was executed at RB/Rpi-blb1 locus, an exclusive broad-spectrum R-gene locus in potato. As indicated by synteny analysis, RB/Rpi-blb1 homologs were identified in all tested genomes, including potato, tomato, pepper, and Nicotiana, suggesting that the RB/Rpi-blb1 locus has an ancient origin. Two evolutionary patterns, similar to those reported on RGC2 in Lactuca, and Pi2/9 in rice, were detected at this locus. Type I RB/Rpi-blb1 homologs have frequent copy number variations and sequence exchanges, obscured orthologous relationships, considerable nucleotide divergence, and high non-synonymous to synonymous substitutions (Ka/Ks) between or within species, suggesting rapid diversification and balancing selection in response to rapid changes in the oomycete pathogen genomes. These characteristics may serve as signatures for cloning of late blight resistance genes.


Subject(s)
Evolution, Molecular , Genes, Plant , Solanaceae/genetics , Phylogeny , Solanaceae/classification , Solanaceae/microbiology
20.
Gene ; 557(2): 182-7, 2015 Feb 25.
Article in English | MEDLINE | ID: mdl-25527119

ABSTRACT

Amino acid usage varies from species to species. A previous study has found a universal trend in amino acid gain and loss in many taxa and a one-way model of amino acid evolution in which the number of new amino acids increases as the number of old amino acids decreases was proposed. Later studies showed that this pattern of amino acid gain and loss is likely to be compatible with the neutral theory. The present work aimed to further study this problem by investigating the evolutionary patterns of amino acids in 8 primates (the nucleotide and protein alignments are available online http://gattaca.nju.edu.cn/pub_data.html). First, the number of amino acids gained and lost was calculated and the evolution trend of each amino acid was inferred. These values were found to be closely related to the usage of each amino acid. Then we analyzed the mutational trend of amino acid substitution in human using SNPs, this trend is highly correlated with fixation trend only with greater variance. Finally, the trends in the evolution of 20 amino acids were evaluated in human on different time scales, and the increasing rate of 5 significantly increasing amino acids was found to decrease as a function of time elapsed since divergence, and the dS/dN ratio also found to increase as a function of time elapsed since divergence. These results suggested that the observed amino acid substitution pattern is influenced by mutation and purifying selection. In conclusion, the present study shows that usage of amino acids is an important factor capable of influencing the observed pattern of amino acid evolution, and also presented evidences suggesting that the observed universal trend of amino acid gain and loss is compatible with neutral evolution.


Subject(s)
Amino Acids/genetics , Evolution, Molecular , Animals , Callithrix/genetics , Codon , Gorilla gorilla/genetics , Humans , Hylobates/genetics , Macaca mulatta/genetics , Pan troglodytes/genetics , Pongo abelii/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...