Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(24)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36555684

ABSTRACT

Bone formation is critically needed in orthopedic clinical practice. We found that, bone morphogenetic protein-7 (BMP-7) gene expression was significantly increased in fractured mice, which activates canonical Wnt signaling exclusively in osteocytes. Wnt and BMP signaling appear to exhibit synergistic or antagonistic effects in different kinds of cells. However, the communication between Wnt/ß-catenin signaling and BMP signaling in osteocytes is almost unknown. Our study verified in vitro that BMP-7 expression was significantly increased when Wnt signaling was activated in osteocytes. Next, BMP-7 in osteocytes was overexpressed using an adenovirus, the osteogenesis of bone marrow stem cells (BMSCs) was enhanced, when cocultured with osteocytes. On the contrary, BMP-7 in osteocytes was silenced using an adenovirus, the osteogenesis of bone marrow stem cells (BMSCs) was weakened. In addition, the osteogenesis of BMSCs was no longer promoted by Wnt-activated osteocytes when BMP-7 was silenced. Therefore, the results showed that BMP-7 mediated the anabolic actions of Wnt/ß-catenin signaling in osteocytes. Our study provides new evidence for the clinical application of BMP-7-overexpressed osteocytes.


Subject(s)
Bone Morphogenetic Protein 7 , Osteogenesis , Wnt Signaling Pathway , Animals , Mice , beta Catenin/genetics , beta Catenin/metabolism , Bone Morphogenetic Protein 7/genetics , Cell Differentiation/genetics , Cells, Cultured , Osteocytes/metabolism , Osteogenesis/genetics
2.
Free Radic Biol Med ; 188: 337-350, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35752374

ABSTRACT

Excessive iron has emerged in a large population of patients suffering from degenerative or hematological diseases with a common outcome, osteoporosis. However, its underlying mechanism remains to be clarified in order to formulate effective prevention and intervention against the loss of bone-forming osteoblasts. We show herein that increased intracellular iron by ferric ammonium citrate (FAC) mimicking the so-called non-transferrin bound iron concentrations leads to ferroptosis and impaired osteoblast differentiation. FAC upregulates the expression of Trfr and DMT1 genes to increase iron uptake, accumulating intracellular labile ferrous iron for iron overload status. Then, the excessive ferrous iron generates reactive oxygen species (ROS) and lipid peroxidation products (LPO), causing ferroptosis with its typical mitochondrial morphological changes, such as shrinkaged and condensed membrane with diminution and loss of crista and outer membrane rupture. We further examined that ferroptosis is the main cause responsible for FAC-disrupted osteoblast differentiation, although apoptosis and senescence are concurrently induced as well. Mechanistically, we revealed that iron dose-dependently down-regulates the expression of Wnt target genes and inhibits the transcription of Wnt reporter TopFlash construct, so as to inhibit the canonical Wnt signaling. Wnt agonist, ferroptosis inhibitor, or antioxidant melatonin reverses iron-inhibited canonical Wnt signaling to restore osteoblast differentiation by reducing ROS and LPO production to prevent ferroptosis notably without reducing iron overload. This study proposes a working model against excessive iron-induced osteoporosis: iron chelator deferoxamine or the above three drugs prevent ferroptosis, restore traditional Wnt signaling to maintain osteoblast differentiation no matter whether iron overload is removed or not. Additionally, iron chelator should be used to a suitable extent because iron itself is necessary for osteogenic differentiation.


Subject(s)
Ferroptosis , Iron Overload , Osteoporosis , Humans , Iron/metabolism , Iron Chelating Agents/metabolism , Iron Chelating Agents/pharmacology , Iron Overload/genetics , Iron Overload/metabolism , Osteoblasts , Osteogenesis/genetics , Osteoporosis/metabolism , Reactive Oxygen Species/metabolism , Wnt Signaling Pathway
SELECTION OF CITATIONS
SEARCH DETAIL
...