Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Ecol Evol ; 14(5): e11468, 2024 May.
Article in English | MEDLINE | ID: mdl-38799394

ABSTRACT

The metacommunity theory enhances our understanding of how ecological processes regulate community structure. Yet, unraveling the complexities of soil nematode metacommunity structures across various spatial scales and determining the factors influencing these patterns remains challenging. Therefore, we conducted an investigation on soil nematode metacommunities spanning from north to south in the Northeastern China. Our aim was to test whether nematode metacommunities were structured by different drivers under three land covers (i.e., farmland, grassland and woodland) at the local and regional scales. The results revealed that the Clementsian, Gleasonian and their quasi-structures of soil nematodes collectively accounted for 93% of the variation across the three land covers at the local and regional scales. These structures suggest that the soil nematode metacommunities in the Northeast China responded to fluctuations in environmental gradients. At the local scale, metacommunities were primarily shaped by biological interactions. At the regional scale, environmental heterogeneity, dispersal limitation and biological interactions all contributed to nematode metacommunities. Meanwhile, biological interactions under three land covers were represented within different trophic groups, with plant parasites predominant in farmlands and bacterivores in grasslands and woodlands. In conclusion, the metacommunity structures of soil nematodes remain stable at different spatial scales and land covers. Biological interactions are widespread among nematodes regardless of changes in spatial scales and land covers. This study reveals the importance of nematode sensitivity to the environment and biological interactions in shaping the nematode metacommunities, potentially enhancing our understanding of the spatial patterns of nematode metacommunities.

2.
Poult Sci ; 103(5): 103592, 2024 May.
Article in English | MEDLINE | ID: mdl-38447309

ABSTRACT

Since September 2018, serious meningitis has been found on some breeding-duck farms in Shandong Province, China. A large number of ducks exhibit severe neurological symptoms. The ducks were randomly selected for laboratory testing. Duck brain samples were collected using standard sterile techniques, and the staphylococci isolates were detected in 404 (70.14%) out of 576 brain samples. A total of 525 coagulase-negative staphylococci (CoNS) strains were isolated, including 6 species: Staphylococcus sciuri (S. sciuri) (67.24%, 353/525), Staphylococcus epidermidis (S. epidermidis) (9.71%, 51/525), Staphylococcus saprophyticus (S. saprophyticus) (8.38%, 44/525), Staphylococcus lentus (S. lentus) (7.62%, 40/525), Staphylococcus haemolyticus (S. haemolyticus) (2.48%, 13/525), and Staphylococcus xylosus (S. xylosus) (4.57%, 24/525). Mixed strain infections were detected in 121 (29.95%) infected presentations. The antimicrobial susceptibility testing indicated that 40.38% of the isolates exhibited multi-drug resistance, and 53.90% of the strains were methicillin-resistant strains by amplification of the methicillin resistance gene (mecA) gene. Through experimental reproduction of the disease, we determined that the CoNS strains were the leading pathogens causing bacterial meningitis in ducks. Although these CoNS strains does not directly cause the death of sick ducks, they still cause large economic losses due to the retarded growth and development of the sick ducks, lower feed returns, and lower grades of processed duck products. The results of this study will contribute to our understanding of the epidemiology and pathogenesis of CoNS and be helpful in the prevention and treatment of the infection.


Subject(s)
Coagulase , Ducks , Meningitis, Bacterial , Poultry Diseases , Staphylococcal Infections , Staphylococcus , Animals , Staphylococcus/drug effects , Staphylococcus/isolation & purification , Staphylococcus/enzymology , Poultry Diseases/microbiology , Poultry Diseases/epidemiology , Staphylococcal Infections/veterinary , Staphylococcal Infections/microbiology , Staphylococcal Infections/epidemiology , Coagulase/metabolism , Meningitis, Bacterial/veterinary , Meningitis, Bacterial/microbiology , Meningitis, Bacterial/epidemiology , China/epidemiology , Anti-Bacterial Agents/pharmacology
3.
Oecologia ; 204(3): 491-504, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38265599

ABSTRACT

Climate change will likely increase habitat loss of endemic tree species and drives forest conversion in mountainous forests. Elevation gradients provide the opportunity to predict possible consequences of such changes. While species compositions of various taxa have been investigated along elevation gradients, data on trophic changes in soil-dwelling organisms are scarce. Here, we investigated trophic changes of the Collembola communities along the northern slope of Changbai Mountain, China. We sampled Collembola in primary forests at seven elevations (800-1700 m asl). We measured individual body lengths and bulk stable isotopes on species level. We further categorized Collembola species into life forms. The community-weighted means of Δ15N and Δ13C values as well as minimum Δ15N values and isotopic uniqueness of Collembola communities increased with increasing elevation, while the range of Δ15N values decreased. Maximum and minimum of Δ13C values differed between elevations but showed no linear trend. Further, Δ15N values of Collembola species occurring across all elevations increased with elevation. Changes in Δ15N values with elevation were most pronounced in hemiedaphic species, while Δ13C values increased strongest with elevation in euedaphic species. Δ15N values increased with decreasing body size in hemiedaphic and euedaphic species. Overall, the results suggest that Collembola species functioning as primary decomposers at lower elevations shift towards functioning as secondary decomposers or even predators or scavengers at higher elevation forests. The results further indicate that access to alternative food resources depends on Collembola life form as well as body size and varies between ecosystems.


Subject(s)
Ecosystem , Forests , Trees , Carbon Isotopes/analysis , Body Size
4.
J Virol Methods ; 322: 114810, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37689372

ABSTRACT

Duck Tembusu virus disease, caused by duck Tembusu virus (DTMUV), brings great harm to duck industry. Early diagnosis is of great significance for the prevention and control of this disease. In order to develop a specific and sensitive method for rapid diagnosis of DTMUV, reverse-transcriptase recombinase aided amplification combined with lateral flow dipstick (RT-RAA-LFD) method for detection of DTMUV was established. Firstly, downstream primer was labeled with biotin and probe was labeled with FAM, and primer concentration, reaction time, and reaction temperature were optimized. Then, the specificity and sensitivity of this method was investigated. The results of specificity test showed that it had no cross reaction with other common pathogens such as low pathogenic avian influenza virus (AIV), Newcastle disease virus (NDV), duck hepatitis A virus (DHV), and duck Reovirus. The results of sensitivity test showed that the minimum detection limit of this method was 10 copies/µL, which was 1000 times than conventional RT-PCR (104 copies/µL), and equivalent to that of fluorescent quantitative PCR. Furthermore, this RT-RAA-LFD method demonstrated excellent intragroup and intergroup consistency. Finally, the RT-RAA-LFD assay and real-time PCR were both utilized to examine 58 clinical samples concurrently. The results showed that the RT-RAA-LFD method (5/58) was more sensitive than the fluorescence quantitative PCR method (4/58). In summary, RT-RAA-LFD method established in this study had a strong specificity and high sensitivity, which provided technical support for clinical detection of DTMUV.


Subject(s)
Flavivirus , Influenza A virus , Animals , Reverse Transcription , Recombinases/metabolism , Flavivirus/genetics , Sensitivity and Specificity , Nucleic Acid Amplification Techniques/methods
5.
Vet Microbiol ; 280: 109679, 2023 May.
Article in English | MEDLINE | ID: mdl-36822034

ABSTRACT

Type I interferon (IFN-I) is essential for the regulation of host-virus interactions, and viruses have evolved strategies to escape the host immune response. Duck hepatitis A virus type 1 (DHAV-1) causes severe liver necrosis and hemorrhage, neurological symptoms, and high mortality in ducklings. However, how DHAV-1 interacts with the duck innate immune system remains unclear. In this study, DHAV-1-encoded proteins were cloned, and DHAV-1 2A2 was shown to strongly suppress IFN-ß-luciferase activity, triggered by Sendai virus and polyriboinosinic polyribocytidylic acid [poly(I:C)], along with the transcription of IFN-ß and downstream antiviral genes, including OASL, PKR, and TNF-a. In addition, 2A2 interacts with the central adaptor proteins mitochondrial antiviral signaling (MAVS) and TANK-binding kinase 1 (TBK1) by its N-terminal 1-100 amino acids (aa), thus leading to the inhibition of IFN-ß production. Importantly, the deletion of the N-terminal 1-100 aa region of 2A2 abolished inhibition of IFN-I production. Moreover, the transmembrane domain of the MAVS protein and the ubiquitin domain of TBK1 were demonstrated to be required for interaction with DHAV-1 2A2. These findings revealed a novel strategy by which DHAV-1 hijacks cellular immunosurveillance and provided new insights into controlling the disease.


Subject(s)
Hepatitis Virus, Duck , Interferon Type I , Animals , Antiviral Agents , Immunity, Innate , Interferon-beta/metabolism , Signal Transduction , Viral Nonstructural Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism
6.
Vet Microbiol ; 277: 109621, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36525908

ABSTRACT

Duck hepatitis A virus type 1 (DHAV-1) infection causes an acute and highly fatal disease in young ducklings. Exosomes are nano-sized small extracellular vesicles secreted by various cells, which participate in intercellular communication and play a key role in the physiological and pathological processes. However, the role of exosomes in DHAV-1 transmission remains unknown. In this study, through RT-PCR, WB analysis and TEM observation, the complete DHAV-1 genomic RNA, partial viral proteins, and virions were respectively identified in the exosomes derived from DHAV-1-infected duck embryo fibroblasts (DEFs). The productive DHAV-1 infection was transmitted by exosomes in DEFs, duck embryos, and ducklings, and high titers of neutralizing antibodies completely blocked DHAV-1 infection but did not significantly neutralize exosome-mediated DHAV-1 infection. To the best of our knowledge, this is the first report that exosome-mediated DHAV-1 infection was resistant to antibody neutralization in vivo and in vitro, which might be an immune evasion mechanism of DHAV-1.


Subject(s)
Exosomes , Hepatitis Virus, Duck , Hepatitis, Viral, Animal , Picornaviridae Infections , Poultry Diseases , Animals , Hepatitis Virus, Duck/genetics , Exosomes/pathology , Picornaviridae Infections/veterinary , Ducks
7.
Front Cell Infect Microbiol ; 12: 858537, 2022.
Article in English | MEDLINE | ID: mdl-35531338

ABSTRACT

Duck hepatitis A virus type 1 (DHAV-1) is a highly lethal virus that severely affects the duck industry worldwide. Long noncoding RNAs (lncRNAs) exert crucial roles in pathogen attacks. Here, we conducted deep transcriptome analysis to investigate the dynamic changes of host lncRNAs profiles in DHAV-1-infected duck embryo fibroblasts. We identified 16,589 lncRNAs in total and characterized their genomic features. Moreover, 772 and 616 differentially expressed lncRNAs (DELs) were screened at 12 and 24 h post-infection. Additionally, we predicted the DELs' cis- and trans-target genes and constructed lncRNA-target genes regulatory networks. Functional annotation analyses indicated that the putative target genes of DELs participated in diverse vital biological processed, including immune responses, cellular metabolism, and autophagy. For example, we confirmed the dysregulation of pattern recognition receptors (TLR3, RIG-I, MDA5, LGP2, cGAS), signal transducers (STAT1), transcription factors (IRF7), immune response mediators (IL6, IL10, TRIM25, TRIM35, TRIM60, IFITM1, IFITM3, IFITM5), and autophagy-related genes (ULK1, ULK2, EIF4EBP2) using RT-qPCR. Finally, we confirmed that one DHAV-1 induced lncRNA-XR_003496198 is likely to inhibit DHAV-1 replication in DEFs. Our study comprehensively analyzed the lncRNA profiles upon DHAV-1 infection and screened the target genes involved in the innate immune response and autophagy signaling pathway, thereby revealing the essential roles of duck lncRNAs and broadening our understanding of host-virus interactions.


Subject(s)
Hepatitis Virus, Duck , RNA, Long Noncoding , Animals , Ducks , Gene Expression Profiling , Gene Regulatory Networks , Hepatitis Virus, Duck/genetics , RNA, Long Noncoding/metabolism
8.
Ecol Evol ; 12(2): e8559, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35169449

ABSTRACT

Altitudinal changes in the diversity of plants and animals have been well documented; however, soil animals received little attention in this context and it is unclear whether their diversity follows general altitudinal distribution patterns. Changbai Mountain is one of few well-conserved mountain regions comprising natural ecosystems on the Eurasian continent. Here, we present a comprehensive analysis of the diversity and community composition of Collembola along ten altitudinal sites representing five vegetation types from forest to alpine tundra. Among 7834 Collembola individuals, 84 morphospecies were identified. Species richness varied marginally significant with altitude and generally followed a unimodal relationship with altitude. By contrast, the density of Collembola did not change in a consistent way with altitude. Collembola communities changed gradually with altitude, with local habitat-related factors (soil and litter carbon-to-nitrogen ratio, litter carbon content, and soil pH) and climatic variables (precipitation seasonality) identified as major drivers of changes in Collembola community composition. Notably, local habitat-related factors explained more variation in Collembola assemblages than climatic variables. The results suggest that local habitat-related factors including precipitation and temperature are the main drivers of changes in Collembola communities with altitude. Specifically, soil and litter carbon-to-nitrogen ratio correlated positively with Collembola communities at high altitudes, whereas soil pH correlated positively at low altitudes. This documents that altitudinal gradients provide unique opportunities for identifying factors driving the community composition of not only above- but also belowground invertebrates.

9.
Poult Sci ; 101(3): 101620, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34986446

ABSTRACT

The plasmid-borne fosfomycin resistance gene fosA3 has been identified in Escherichia coli (E. coli) from various animals but has rarely been reported in ducks. In this study, we investigated the fosA3 prevalence and molecular characteristics of fosA3-harboring E. coli strains from ducks in Shandong province of China. In 416 E. coli isolates, 91 (21.88%) were identified as fosA3-bearing strains, and the fosfomycin-resistant phenotype of 88 of the 91 fosA3-harboring strains was successfully transferred to the recipient strains. Seven different genetic structures surrounding the fosA3 gene were detected and 2 new contexts were discovered among the fosA3-carrying E. coli. Twenty fosA3-harboring isolates and their trans-conjugants were randomly selected for pulsed-field gel electrophoresis (PFGE) typing and S1-nuclease PFGE, respectively. The PFGE patterns revealed that the 20 randomly selected fosA3-bearing isolates were not a result of clonal dissemination. S1-PFGE showed that 15 of the 20 randomly selected trans-conjugants carried a single plasmid, and these 15 plasmids that harbored fosA3 (55-190 kb) were distributed into the following replicon types: IncF (n = 11), IncI1 (n = 1), IncN (n = 1), untypable (n = 1), and W-FIC (n = 1). Additionally, as vectors for fosA3 in E. coli, F-:A1:B6, N/ST1, IncI1/ST2, W-FIC, and one untypable plasmid had never been reported before. These observations highlighted the importance of ducks as a reservoir for multidrug-resistant fosA3-carrying E. coli.


Subject(s)
Ducks , Escherichia coli , Animals , Anti-Bacterial Agents , Chickens/genetics , China/epidemiology , Ducks/genetics , Molecular Epidemiology , beta-Lactamases/genetics
10.
Sci Total Environ ; 818: 151738, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-34808170

ABSTRACT

In response to human-induced changes in the environment, it is crucial to assess the underlying factors of the impacts of forest conversion on ecosystem function. However, research is limited on bacteria and fungi diversity, functional properties, and community assembly mechanisms in response to forest-to-cropland conversion. We categorized soil bacterial and fungal communities from primary forest, secondary forest, and cropland in Changbai Mountains, China. We found that forest-to-cropland conversion altered the structure and composition of bacterial and fungal communities and might be associated with potential changes in function. The null models indicated that the conversion from forest to cropland enhanced the bacterial dispersal limitation process and weakened the fungal dispersal limitation processes. Furthermore, ecological drift dominates the ecological processes of cropland fungi. Both edaphic properties (the content of C: N ratio, available phosphorus, nitrate) significantly impacted on soil bacterial and fungal community structures. In addition, there were significant functional variations in the fungal community between forest-to-cropland. The ectomycorrhizal and saprotrophic fungi showed increased abundance in the forest microbial communities, whereas the endophytic and pathogenic fungal abundance was increased in cropland soil. Taken together, our data illustrate the differences in the response of bacteria and fungi to forest-to-cropland conversion in temperate forest areas and deepen our understanding of the effects of forest conversion on microbial functions and community assembly processes.


Subject(s)
Microbiota , Mycorrhizae , China , Crops, Agricultural , Forests , Fungi , Humans , Soil/chemistry , Soil Microbiology
11.
Insects ; 14(1)2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36661961

ABSTRACT

The consideration of environmental factors has long been crucial to developing theories about the spatial variability of species diversity. However, the effects of global warming on Collembola, in permafrost wetlands, are largely unknown. Understanding how Collembola are affected by climate warming is important as they directly affect the community assembly and decomposition processes of plant litter within soil ecosystems. A peatland area in a cold temperate monsoon climate zone in the Great Hing'an Mountains of Northeast China was selected as the study area. Collembola were captured using an aspirator after five years of simulated warming using open top chambers (OTCs). Sampling in different growth seasons showed different characteristics in the control (CK) and warming (OTCs) treatment. Further, the results showed that (1) warming treatment increased the species richness and abundance of Collembola in the different seasons, except in May, (2) warming increased Collembola abundance in permafrost wetlands, and the warming effect was more significant during the cold season (about eight times in April), (3) species composition differed significantly in the control and warming treatment in May and September, and (4) the Collembola species composition in permafrost wetlands was mainly determined by air humidity, indicating different responses of Collembola species to the indirect effect of warming on water availability. We found that warming was the primary factor positively affecting the abundance of Collembola. An increase of Collembola abundance and community alteration to warming could have profound cascading effects on the microbes and plants they feed on in permafrost wetlands.

12.
Ecol Evol ; 12(12): e9632, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36590334

ABSTRACT

Mountain forests are important carbon stocks and biodiversity hotspots but are threatened by increased insect outbreaks and climate-driven forest conversion. Soil microorganisms play an eminent role in nutrient cycling in forest habitats and form the basis of soil food webs. Uncovering the driving factors shaping microbial communities and functioning at mountainsides across the world is of eminent importance to better understand their dynamics at local and global scales. We investigated microbial communities and their climatic and local soil-related drivers along an elevational gradient (800-1700 m asl) of primary forests at Changbai Mountain, China. We analyzed substrate-induced respiration and phospholipid fatty acids (PLFA) in litter and two soil layers at seven sites. Microbial biomass (Cmic) peaked in the litter layer and increased towards higher elevations. In the litter layer, the increase in Cmic and in stress indicator ratios was negatively correlated with Ca concentrations indicating increased nutritional stress in high microbial biomass communities at sites with lower Ca availability. PLFA profiles in the litter layer separated low and high elevations, but this was less pronounced in soil, suggesting that the litter layer functions as a buffer for soil microbial communities. Annual variations in temperature correlated with PLFA profiles in all three layers, while annual variations in precipitation correlated with PLFA profiles in upper soil only. Furthermore, the availability of resources, soil moisture, Ca concentrations, and pH structured the microbial communities. Pronounced changes in Cmic and stress indicator ratios in the litter layer between pine-dominated (800-1100 m) and spruce-dominated (1250-1700 m) forests indicated a shift in the structure and functioning of microbial communities between forest types along the elevational gradient. The study highlights strong changes in microbial community structure and functioning along elevational gradients, but also shows that these changes and their driving factors vary between soil layers. Besides annual variations in temperature and precipitation, carbon accumulation and nitrogen acquisition shape changes in microbial communities with elevation at Changbai Mountain.

13.
Vaccines (Basel) ; 9(12)2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34960225

ABSTRACT

With the continuous development of duck farming and the increasing breeding density, the incidence of duck hepatitis A virus type 1 (DHAV-1) has been on the rise, seriously endangering the development of duck farming. To reduce the use of antibiotics in duck breeding, susceptibility risks and mortality, and avoid virulence recovery and immune failure risk, this study aims to develop a new type of mucosal immune probiotics and make full use of molecular biology techniques, on the level of genetic engineering, to modify Lactococcus lactis (L. lactis). In this study, a secretory recombinant L. lactis named MG1363-VP1 with an enhanced Green Fluorescent Protein (eGFP) and translation enhancer T7g10L was constructed, which could express the VP1-eGFP fusion protein of DHAV-1. The animal experiment in ducklings was performed to detect the immune response and protection effect of oral microecologics by recombinant L. lactis. The results showed that oral L. lactis MG1363-VP1 significantly induced the body's humoral immune system and mucosal immune system to produce specific anti-VP1 IgG antibodies and mucosal secretory immunoglobulin A (sIgA) for DHAV-1 in ducklings, and cytokines including interleukin-2 (IL-2), interleukin-4 (IL-4), interleukin-10 (IL-10), and interferon gamma (IFN-γ). The mortality rate was monitored simultaneously by the natural infestation in the process of production and breeding; notably, the ducklings vaccinated with L. lactis MG1363-VP1 were effectively protected against the nature infection of DHAV-1. The recombinant L. lactis MG1363-VP1 constructed in this study provides a new means of preventing and controlling DHAV-1 infection in the future.

14.
Vet Microbiol ; 261: 109214, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34461358

ABSTRACT

Novel duck reovirus (NDRV) causes high morbidity in ducklings, and recovered ducklings are often remarkably stunted in growth. In this study, four NDRV strains were isolated from the NDRV outbreaks that occurred in different regions of Shandong province, China. The biological characteristics and pathogenicity of the four NDRV strains were elucidated, and the N20 was identified as a naturally attenuated strain. Three-day-old ducklings were immunized with live N20 strain (100 ELD50/duck), and challenged with 104.52 ELD50 of virulent N19 strain at 7 days post immunization. The vaccinated ducklings showed no evidence of clinical signs, gross and histopathological lesions, or loss of body weight, and 100 % protection against the virulent NDRV N19 infection. The NDRV-specific antibodies were generated in the immunized ducklings and could neutralize different NDRV strains. These results indicated that the N20 strain was a promising live attenuated vaccine candidate against highly pathogenic NDRV infection.


Subject(s)
Orthoreovirus, Avian/immunology , Poultry Diseases/prevention & control , Reoviridae Infections/veterinary , Viral Vaccines/immunology , Animals , Antibodies, Neutralizing/metabolism , Antibodies, Viral/blood , China , Ducks , Orthoreovirus, Avian/genetics , Orthoreovirus, Avian/isolation & purification , Poultry Diseases/virology , Reoviridae Infections/prevention & control , Vaccines, Attenuated/immunology
15.
Poult Sci ; 100(3): 100887, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33516478

ABSTRACT

The extensive use of antibiotics has, in recent years, caused antimicrobial resistance and multidrug resistance in Escherichia coli to gradually develop into a worldwide problem. These resistant E. coli could be transmitted to humans through animal products and animal feces in the environment, thereby creating a problem for bacterial treatment for humans and animals and resulting in a public health issue. Monitoring the resistance of E. coli throughout the broiler fattening period is therefore of great significance for both the poultry industry and public health. In this longitudinal study, samples were taken from 6 conventional broiler fattening farms in Shandong Province, China, at 3 different times within 1 fattening period. The overall isolation rate of E. coli was 53.04% (375/707). Antibiotic resistance was very common in the E. coli isolated from these farms, and differed for different antibiotics, with ampicillin having the highest rate (92.86%) and cefoxitin the lowest (10.12%). Multidrug resistance was as high as 91.07%. More importantly, both the resistance rate of E. coli to the different drugs and the detection rate of drug resistance genes increased over time. The mobile colistin resistance (mcr-1) gene was detected in 24.40% of the strains, and these strains often carried other drug resistance genes, such as those conferring aminoglycoside, ß-lactamase, tetracycline, and sulfonamide resistance. Antimicrobial resistance and drug resistance genes in E. coli were least common in the early fattening stage. The individual detection rates of sul1, sul3, aacC4, aphA3, and mcr-1 were significantly lower (P < 0.05) for the early fattening stage than for the middle and late stages. The rational use of antibiotics, in conjunction with the improvement of the breeding environment during the entire broiler fattening cycle, will be helpful in the development of the poultry industry and the protection of public health.


Subject(s)
Drug Resistance, Multiple , Escherichia coli Infections , Escherichia coli , Poultry Diseases , Animals , Anti-Bacterial Agents/pharmacology , Chickens , China/epidemiology , Drug Resistance, Multiple/genetics , Escherichia coli/drug effects , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Escherichia coli Proteins/genetics , Farms/statistics & numerical data , Longitudinal Studies , Microbial Sensitivity Tests/veterinary , Poultry Diseases/epidemiology , Poultry Diseases/microbiology
16.
Transbound Emerg Dis ; 68(2): 267-275, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32598568

ABSTRACT

Duck hepatitis A virus (DHAV) causes a highly contagious and acute disease in ducklings younger than 3 weeks of age and spreads rapidly by horizontal transmission to all susceptible ducklings in the flock. To date, there is no evidence of vertical transmission of DHAV-1. In a previous study, we identified a novel DHAV type 1 (DHAV-1) isolate that could infect adult ducks and induce laying drop. In this study, 30 non-embryonated duck eggs and 60 17-day-old embryos were collected from three breeding duck flocks with egg drop syndrome caused by DHAV-1 in China, and 30 17-day-old embryos were randomly selected from the 60 embryos and allowed to hatch. DHAV-1 RNA was detected by RT-PCR in 10 of 30 non-embryonated eggs, 9 of 30 17-day-old embryos, 5 of 7 dead embryos and 5 of 23 newly hatched ducklings. Overall, 29 of 90 (32.2%) eggs and embryos were positive for DHAV-1. Three DHAV-1 strains were isolated from the dead duck embryos of the three breeding duck flocks, respectively. Pathogenicity studies showed that the three DHAV-1 isolates had median embryo lethal doses but were highly pathogenic to healthy ducklings. Compared with the DHAV reference strains, there were two specific amino acid mutation sites (F169 and S220 ) in VP1 of the three isolates. To the best of our knowledge, this is the first report that DHAV-1 is isolated from duck embryos. The findings provide evidence of possible vertical transmission of DHAV-1 from breeding ducks to ducklings.


Subject(s)
Ducks , Hepatitis Virus, Duck/physiology , Hepatitis, Viral, Animal/transmission , Infectious Disease Transmission, Vertical/veterinary , Picornaviridae Infections/veterinary , Poultry Diseases/transmission , Amino Acid Sequence , Animals , China , Hepatitis Virus, Duck/genetics , Hepatitis, Viral, Animal/virology , Phylogeny , Picornaviridae Infections/transmission , Picornaviridae Infections/virology , Poultry Diseases/virology , Sequence Alignment
17.
Front Cell Infect Microbiol ; 11: 811556, 2021.
Article in English | MEDLINE | ID: mdl-35047423

ABSTRACT

Duck hepatitis A virus 1 (DHAV-1) is a highly contagious etiological agent that causes acute hepatitis in young ducklings. MicroRNAs (miRNAs) play important regulatory roles in response to pathogens. However, the interplay between DHAV-1 infection and miRNAs remains ambiguous. We characterized and compared miRNA and mRNA expression profiles in duck embryo fibroblasts cells (DEFs) infected with DHAV-1. In total, 36 and 96 differentially expressed (DE) miRNAs, and 4110 and 2595 DE mRNAs, were identified at 12 and 24 h after infection. In particular, 126 and 275 miRNA-mRNA pairs with a negative correlation were chosen to construct an interaction network. Subsequently, we identified the functional annotation of DE mRNAs and target genes of DE miRNAs enriched in diverse Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, which may be important for virus resistance, cell proliferation, and metabolism. Moreover, upregulated miR-222a could negatively regulate DHAV-1 replication in DEFs and downregulate integrin subunit beta 3 (ITGB3) expression by targeting the 3' untranslated region (3'UTR), indicating that miR-222a may modulate DHAV-1 replication via interaction with ITGB3. In conclusion, the results reveal changes of mRNAs and miRNAs during DHAV-1 infection and suggest miR-222a as an antiviral factor against DHAV-1.


Subject(s)
Ducks/virology , Hepatitis Virus, Duck , Hepatitis, Viral, Animal/immunology , MicroRNAs , Picornaviridae Infections/immunology , Animals , Cells, Cultured , Fibroblasts/virology , MicroRNAs/genetics , Picornaviridae Infections/veterinary , RNA, Messenger/genetics
18.
Poult Sci ; 99(9): 4227-4234, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32867966

ABSTRACT

Since 2017, an infectious disease, named feather shedding syndrome (FSS), has consistently broken out in Cherry Valley ducks in East China. The sick ducks showed the new clinical symptoms of feather shedding and being plucked off with difficulty after slaughter. The high incidence rate of 20 to 70% predominantly happened in ducks of 4 to 5 wk of age, and nearly 40% mortality rate was observed in infected ducks. To explore the possible role of novel goose parvovirus-associated virus (NGPV) and duck circovirus (DuCV) in this disease, a total of 540 feather sac samples were collected from sick ducks with FSS. The infection rates of NGPV and DuCV in samples were 82.78 and 78.89%, respectively, and the coinfection rate of the 2 viruses was 70.00%. Notably, ducks of 4 to 5 wk of age usually presented obvious and severe FSS in the flocks with high codetection rate of NGPV and DuCV. Furthermore, 9 NGPV strains were isolated from feather sacs and 5 synchronous amino acid mutations were demonstrated in VP3 protein. These results indicated that coinfection of NGPV and DuCV might play an important role in duck FSS disease.


Subject(s)
Circoviridae Infections , Circovirus , Feathers , Parvoviridae Infections , Parvovirinae , Poultry Diseases , Satellite Viruses , Animals , China/epidemiology , Circoviridae Infections/complications , Circoviridae Infections/pathology , Circoviridae Infections/veterinary , Coinfection/veterinary , Feathers/virology , Mutation , Parvoviridae Infections/complications , Parvoviridae Infections/pathology , Parvoviridae Infections/veterinary , Poultry Diseases/pathology , Poultry Diseases/virology , Syndrome , Viral Proteins/genetics
19.
Animals (Basel) ; 10(8)2020 Jul 29.
Article in English | MEDLINE | ID: mdl-32751361

ABSTRACT

Colistin has been used as a growth promotant in livestock feed for many years. In China, mcr-1-positive Escherichia coli strains have been isolated from humans, chickens, and pigs. To date, there are few reports about the prevalence and molecular characteristics of fecal E. coli bearing mcr-1 in the meat ducks. In this study, the prevalence of mcr-1 gene was investigated among 120 fecal E. coli strains isolated from healthy meat ducks in Shandong province of China between October 2017 and February 2018. A total of nine mcr-1-containing E. coli strains were identified and two were identified as extra-intestinal pathogenic E. coli (ExPEC) among them. The clonal relationship of the nine E. coli strains was determined by multilocus sequencing typing (MLST) and pulsed field gel electrophoresis (PFGE), and the results indicated that all mcr-1-carrying isolates were clonally unrelated. Two different genetic contexts of mcr-1 were identified among these isolates. Colistin-resistant phenotype of all the isolates was successfully transferred to the recipient strains by conjugation experiments and seven transconjugants carried a single plasmid. The mcr-1 was located on three replicon plasmids: IncI2 (n = 4), IncFII (n = 2) and IncN (n = 1). Complete sequence analysis of a representative plasmid pTA9 revealed that it was strikingly similar with plasmid pMCR1-IncI2 of E. coli, plasmid pHNSHP45 of E. coli, and plasmid pWF-5-19C of Cronobacter sakazakii, implying that pTA9-like plasmids may be epidemic plasmids that mediate the spread of mcr-1 among Enterobacteriaceae. These results highlight that healthy meat duck is a potential reservoir for multidrug resistant mcr-1-containing E. coli strains.

20.
Zootaxa ; 4751(1): zootaxa.4751.1.5, 2020 Mar 16.
Article in English | MEDLINE | ID: mdl-32230433

ABSTRACT

Two new species, Semicerura bryophila sp. nov. and S. draconis sp. nov., are described from the Far East of Russia and north-eastern part of China. S. goryshini Martynova, 1969 is redescribed based on the type material and fresh materials from China and South Korea. The holotype of S. bishopi Maynard, 1951 (eastern areas of the U.S.A.) was studied and commented on. Taxonomic remarks to s-chaetotaxy and the labium of the genus are given.


Subject(s)
Arthropods , Animal Distribution , Animals , Asia
SELECTION OF CITATIONS
SEARCH DETAIL
...