Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
J Environ Manage ; 360: 121159, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38759549

ABSTRACT

Intimately coupled photocatalysis and biodegradation (ICPB) system is a potential wastewater treatment technology, of which TiO2-based ICPB system has been widely studied. There are many ways to improve the degradation efficiency of the ICPB process, but no crystal facet engineering method has been reported yet. In this work, a new ICPB system coated with NaF-TiO2 exposing high energy facets was designed to degrade biorecalcitrant psychotropic drug - venlafaxine (VNF). Initially, the TiO2 crystal surface was modified with NaF, resulting in the formation of NaF-TiO2 with a 14.4% increase in the exposure ratio of (001). The contribution rate of ·OH was increased by 9.5%, and the contribution rate of h+ was increased by 33.2%. Next, NaF-TiO2 was loaded onto the surface of the sponge carrier, and then the ICPB system was constructed after about 15 days of biofilm formation. After the ICPB system was acclimated with VNF, the removal rate of COD decreased significantly (the lowest was 62.7%), but that of ammonia nitrogen remained at 50.5 ± 6.0% and the extracellular polymeric substance (EPS) secretion increased by 84.1 mg/g VSS. According to the high throughput results, at the phylum level, Proteobacteria and Chloroflexi together maintain the nitrogen removal capability and structural stability of the ICPB system. The relative abundance of Bacteroidota was significantly increased by 14.2%, suggesting that there may be some correlation between Bacteroidota and certain metabolites of the anti-depressant active ingredients. At the genus level, the Thauera (3.1%∼11.5%) is the major bacterial group that secretes EPS, protecting biofilm against external influences. Most of the changes in microorganisms are consistent with the decontamination properties and macroscopic appearance of EPS in the ICPB system. Finally, the degradation efficiency of ICPB system for VNF was investigated (92.7 ± 3.8%) and it was mostly through hydroxylation and demethylation pathways, with more small molecular products detected, providing the basis for biological assimilation of VNF. Collectively, the NaF-TiO2 based ICPB system would be lucrative for the future degradation of venlafaxine.


Subject(s)
Biodegradation, Environmental , Biofilms , Titanium , Venlafaxine Hydrochloride , Biofilms/drug effects , Titanium/chemistry , Kinetics , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/chemistry , Wastewater/chemistry , Catalysis
2.
Huan Jing Ke Xue ; 44(7): 3997-4005, 2023 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-37438298

ABSTRACT

Microplastics (MPs), as a new type of pollutant, are widely detected in sewage treatment plants. Currently, research on MPs in traditional sewage treatment systems has mainly been focused on the pollution level and distribution characteristics, with a lack of studying the impact of MPs on the sludge granulation. In order to explore the effect of MPs on the granulation process, a microplastic exposure test was conducted by adding polyethylene terephthalate microplastics (PET-MPs), which are widespread in the environment. The operating performance of the system, extracellular polymeric substance (EPS) composition, and flora enrichment were analyzed on the sludge granulation. The results showed that the exposure of PET-MPs significantly accelerated the sludge granulation process, whereas the increase in EPS content dominated by PN enhanced the sludge surface hydrophobicity; the granulation rate and EPS secretion were proportional to the exposed particle size. Microplastics and EPS secretions synergistically promoted the formation of granular sludge. However, continuous microplastic exposure led to deterioration of the system decontamination performance and inhibited the degradation process of pollutants, with the most negative effect of nitrite nitrogen accumulation under 250 µm PET-MPs exposure, as high as (5.08±0.24) mg·L-1. The high-throughput sequencing revealed that the microbial community diversity fell in the experimental group. The dominant bacteria at the phylum level were Proteobacteria and Bacteroidota on the sludge granulation. Rhodocyclaceae, Sphingomonadaceae, Flavobacteriaceae, and Rhodanobacteraceae promoted flocculation by increasing EPS secretion. The decrease in Comamonadaceae and Chitinophagaceae weakened the ammonia and nitrite oxidation capacity of the system, whereas the decrease in Rhodobacteraceae, Hyphomonadaceae, and Xanthomonadaceae inhibited the removal of nitrate nitrogen.


Subject(s)
Environmental Pollutants , Extracellular Polymeric Substance Matrix , Microplastics , Plastics , Sewage , Bacteroidetes , Nitrogen
3.
J Environ Manage ; 336: 117659, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36893544

ABSTRACT

The growing increasing occurrence of perfluorooctanoic acid (PFOA) in wastewater has raised concerns about its potential impact on the environment. Nevertheless, the impact of PFOA at environmentally relevant level on the formation of aerobic granular sludge (AGS) is still a 'black box'. This study thus aims to fill this gap by comprehensive investigation of sludge properties, reactor performance and microbial community during the formation of AGS. It was found that 0.1 mg/L PFOA delayed the formation of AGS, causing relatively lower proportion of large size AGS at the end of operation process. Interestingly, the microorganisms contribute to the reactor's tolerance to PFOA by secreting more extracellular polymeric substances (EPS) to slow or block the entry of toxic substances into the cells. During the granule maturation period, the reactor nutrient removal especially chemical oxygen demand (COD) and total nitrogen (TN) were affected by PFOA, decreasing the corresponding removal efficiencies to ∼81.2% and ∼69.8%, respectively. Microbial analysis further revealed that PFOA decreased the abundances of Plasticicumulans, Thauera, Flavobacterium and Cytophagaceae_uncultured, but it has promoted Zoogloea and Betaproteobacteria_unclassified growth, which maintained the structures and functions of AGS. The above results revealed that the intrinsic mechanism of PFOA on the macroscopic representation of sludge granulation process was revealed, and it is expected to provide theoretical insights and practical support for direct adoption of municipal or industrial wastewater containing perfluorinated compounds to cultivate AGS.


Subject(s)
Sewage , Wastewater , Sewage/chemistry , Waste Disposal, Fluid/methods , Aerobiosis , Bioreactors/microbiology , Nitrogen
SELECTION OF CITATIONS
SEARCH DETAIL
...