Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Dairy Sci ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969005

ABSTRACT

Lactic Acid Bacteria (LAB) have a long history of safe use in milk fermentation and are generally recognized as health-promoting microorganisms when present in fermented foods. LAB are also important components of the human intestinal microbiota and are widely used as probiotics. Considering their safe and health-beneficial properties, LAB are considered appropriate vehicles that can be genetically modified for food, industrial and pharmaceutical applications. Here, this review describes (1) the potential opportunities for application of genetically modified LAB strains in dairy fermentation and (2) the various genomic modification tools for LAB strains, such as random mutagenesis, adaptive laboratory evolution, conjugation, homologous recombination, recombineering, and CRISPR (clustered regularly interspaced short palindromic repeat)- Cas (CRISPR-associated protein) based genome engineering. Lastly, this review also discusses the potential future developments of these genomic modification technologies and their applications in dairy fermentations.

2.
Food Chem ; 454: 139798, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38823201

ABSTRACT

Ingestion of fermented foods impacts human immune function, yet the bioactive food components underlying these effects are not understood. Here, we interrogated whether fermented food bioactivity relates to microbial metabolites derived from aromatic amino acids, termed aryl-lactates. Using targeted metabolomics, we established the presence of aryl-lactates in commercially available fermented foods. After pinpointing fermented food-associated lactic acid bacteria that produce high levels of aryl-lactates, we identified fermentation conditions to increase aryl-lactate production in food matrices up to 5 × 103 fold vs. standard fermentation conditions. Using ex vivo reporter assays, we found that food matrix conditions optimized for aryl-lactate production exhibited enhanced agonist activity for the human aryl-hydrocarbon receptor (AhR) as compared to standard fermentation conditions and commercial products. Reduced microbial-induced AhR activity has emerged as a hallmark of many chronic inflammatory diseases, thus we envision strategies to enhance AhR bioactivity of fermented foods to be leveraged to improve human health.


Subject(s)
Amino Acids, Aromatic , Fermentation , Fermented Foods , Receptors, Aryl Hydrocarbon , Humans , Fermented Foods/analysis , Fermented Foods/microbiology , Amino Acids, Aromatic/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Lactobacillales/metabolism , Lactates/metabolism
3.
J Food Sci ; 89(5): 2546-2556, 2024 May.
Article in English | MEDLINE | ID: mdl-38578148

ABSTRACT

2'-Fucosyllactose (2'-FL) is postulated to provide health benefits and promote the growth of probiotics. This work was undertaken to study the effects of 2'-FL on the viability of starter cultures and Bifidobacterium strains of human origin in yogurt during refrigerated storage. Yogurts were produced containing 2'-FL (0 or 2 g/L) and Bifidobacterium strains of human origin (Bifidobacterium longum subsp. longum BB536 or Bifidobacterium longum subsp. infantis ATCC 15697) at a concentration of at least 109 CFU/mL. All yogurts were stored at 4°C for 5 weeks. Results showed that 2'-FL was stable in yogurts for at least 5 weeks of cold storage, and the addition of 2'-FL did not significantly alter yogurt fermentation parameters, associated metabolites, and the viability of mixed yogurt starter cultures and Bifidobacterium strains (p > 0.05). The addition of bifidobacteria had a negative impact (p < 0.05) on the survival rate of starter cultures, Streptococcus thermophilus and Lactobacillus delbureckii subsp. bulgaricus. Meanwhile, it is difficult to maintain a high survival rate of bifidobacteria in final yogurt products, and the addition of 2'-FL could not enhance the viability of bifidobacteria. B. longum BB536 survived at a level higher than 106 CFU/g for 28 days, while B. infantis ATCC15697 maintained this level for only 7 days. In summary, this study has shown the impact of 2'-FL and bifidobacterial species on yogurt properties, and results suggest that it is promising to use 2'-FL in yogurt products as a prebiotic. PRACTICAL APPLICATION: Yogurt is known for its beneficial effects on human health and nutrition. This study reported the production of symbiotic yogurt containing bifidobacteria and 2'-fucosyllactose (2'-FL) as a functional food for specified health uses. The viability of yogurt starter cultures and probiotic bifidobacterial strains was analyzed in this study. Moreover, this research demonstrated that 2'-FL could be added to yogurt without affecting the characteristics of yogurt significantly.


Subject(s)
Bifidobacterium , Fermentation , Food Storage , Probiotics , Trisaccharides , Yogurt , Yogurt/microbiology , Trisaccharides/pharmacology , Bifidobacterium/growth & development , Humans , Food Storage/methods , Refrigeration , Streptococcus thermophilus/growth & development , Microbial Viability , Food Microbiology , Colony Count, Microbial
4.
Biosensors (Basel) ; 14(4)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38667187

ABSTRACT

Antimicrobial-resistant (AMR) bacteria pose a significant global health threat, and bacteria that produce New Delhi metallo-ß-lactamase (NDM) are particularly concerning due to their resistance to most ß-lactam antibiotics, including carbapenems. The emergence and spread of NDM-producing genes in food-producing animals highlight the need for a fast and accurate method for detecting AMR bacteria. We therefore propose a PCR-coupled CRISPR/Cas12a-based fluorescence assay that can detect NDM-producing genes (blaNDM) in bacteria. Thanks to its designed gRNA, this CRISPR/Cas12a system was able to simultaneously cleave PCR amplicons and ssDNA-FQ reporters, generating fluorescence signals. Our method was found to be highly specific when tested against other foodborne pathogens that do not carry blaNDM and also demonstrated an excellent capability to distinguish single-nucleotide polymorphism. In the case of blaNDM-1 carrying E. coli, the assay performed exceptionally well, with a detection limit of 2.7 × 100 CFU/mL: 100 times better than conventional PCR with gel electrophoresis. Moreover, the developed assay detected AMR bacteria in food samples and exhibited enhanced performance compared to previously published real-time PCR assays. Thus, this novel PCR-coupled CRISPR/Cas12a-based fluorescence assay has considerable potential to improve current approaches to AMR gene detection and thereby contribute to mitigating the global threat of AMR.


Subject(s)
Bacterial Proteins , CRISPR-Associated Proteins , CRISPR-Cas Systems , Carbapenems , Endodeoxyribonucleases , beta-Lactamases , Carbapenems/pharmacology , beta-Lactamases/genetics , Carbapenem-Resistant Enterobacteriaceae/genetics , Enterobacteriaceae/genetics , Enterobacteriaceae/drug effects , Anti-Bacterial Agents/pharmacology , Escherichia coli/genetics , Escherichia coli/drug effects , Biosensing Techniques , Drug Resistance, Bacterial/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...