Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Biotechnol Bioeng ; 119(10): 2919-2937, 2022 10.
Article in English | MEDLINE | ID: mdl-35781691

ABSTRACT

Heterologous glycoprotein production relies on host glycosylation-dependent folding. When the biosynthetic machinery differs from the usual expression host, there is scope to remodel the assembly pathway to enhance glycoprotein production. Here we explore the integration of chaperone coexpression with glyco-engineering to improve the production of a model HIV-1 envelope antigen. Calreticulin was coexpressed to support protein folding together with Leishmania major STT3D oligosaccharyltransferase, to improve glycan occupancy, RNA interference to suppress the formation of truncated glycans, and Nicotiana benthamiana plants lacking α1,3-fucosyltransferase and ß1,2-xylosyltransferase was used as an expression host to prevent plant-specific complex N-glycans forming. This approach reduced the formation of undesired aggregates, which predominated in the absence of glyco-engineering. The resulting antigen also exhibited increased glycan occupancy, albeit to a slightly lower level than the equivalent mammalian cell-produced protein. The antigen was decorated almost exclusively with oligomannose glycans, which were less processed compared with the mammalian protein. Immunized rabbits developed comparable immune responses to the plant-produced and mammalian cell-derived antigens, including the induction of autologous neutralizing antibodies when the proteins were used to boost DNA and modified vaccinia Ankara virus-vectored vaccines. This study demonstrates that engineering glycosylation-directed folding offers a promising route to enhance the production of complex viral glycoproteins in plants.


Subject(s)
Antibodies, Neutralizing , HIV Infections , Animals , Antigens, Viral/metabolism , Glycoproteins/genetics , Glycoproteins/metabolism , Glycosylation , HIV Antibodies , Mammals/metabolism , Polysaccharides/metabolism , Rabbits
2.
Nanotechnology ; 33(48)2022 Sep 12.
Article in English | MEDLINE | ID: mdl-35882111

ABSTRACT

Two-component self-assembling virus-like particles (VLPs) are promising scaffolds for achieving high-density display of HIV-1 envelope (gp140) trimers, which can improve the induction of neutralising antibodies (NAbs). In this study gp140 was displayed on the surface of VLPs formed by the AP205 phage coat protein. The CAP256 SU gp140 antigen was selected as the patient who this virus was isolated from developed broadly neutralising antibodies (bNAbs) shortly after superinfection with this virus. The CAP256 SU envelope is also sensitive to several bNAbs and has shown enhanced reactivity for certain bNAb precursors. A fusion protein comprising the HIV-1 CAP256 SU gp140 and the SpyTag (ST) (gp140-ST) was produced in HEK293 cells, and trimers were purified to homogeneity using gel filtration. SpyCatcher (SC)-AP205 VLPs were produced inEscherichia coliand purified by ultracentrifugation. The gp140-ST trimers and the SC-AP205 VLPs were mixed in varying molar ratios to generate VLPs displaying the glycoprotein (AP205-gp140-ST particles). Dynamic light scattering, negative stain electron microscopy and 2D classification indicated that gp140-ST was successfully bound to the VLPs, although not all potential binding sites were occupied. The immunogenicity of the coupled VLPs was evaluated in a pilot study in rabbits. One group was injected four times with coupled VLPs, and the second group was primed with DNA vaccines expressing Env and a mosaic Gag, followed by modified vaccinia Ankara expressing the same antigens. The animals were then boosted twice with coupled VLPs. Encouragingly, gp140-ST displayed on SC-AP205 VLPs was an effective boost to heterologously primed rabbits, leading to induction of autologous Tier 2 neutralising antibodies in 2/5 rabbits. However, four inoculations of coupled VLPs alone failed to elicit any Tier 2 antibodies. These results demonstrate that the native-like structure of HIV-1 envelope trimers and selection of a geometrically-suitable nanoparticle scaffold to achieve a high-density display of the trimers are important considerations that could improve the effect of nanoparticle-displayed gp140.


Subject(s)
HIV-1 , Nanoparticles , Vaccines , Animals , Broadly Neutralizing Antibodies , HEK293 Cells , Humans , Pilot Projects , Rabbits , env Gene Products, Human Immunodeficiency Virus/chemistry , env Gene Products, Human Immunodeficiency Virus/genetics
3.
Vaccines (Basel) ; 9(11)2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34835214

ABSTRACT

The modest protective effects of the RV144 HIV-1 vaccine trial have prompted the further exploration of improved poxvirus vector systems that can yield better immune responses and protection. In this study, a recombinant lumpy skin disease virus (LSDV) expressing HIV-1 CAP256.SU gp150 (Env) and a subtype C mosaic Gag was constructed (LSDVGC5) and compared to the equivalent recombinant modified vaccinia Ankara (MVAGC5). In vitro characterization confirmed that cells infected with recombinant LSDV produced Gag virus-like particles containing Env, and that Env expressed on the surface of the cells infected with LSDV was in a native-like conformation. This candidate HIV-1 vaccine (L) was tested in a rabbit model using different heterologous vaccination regimens, in combination with DNA (D) and MVA (M) vectors expressing the equivalent HIV-1 antigens. The four different vaccination regimens (DDMMLL, DDMLML, DDLMLM, and DDLLMM) all elicited high titers of binding and Tier 1A neutralizing antibodies (NAbs), and some regimens induced Tier 1B NAbs. Furthermore, two rabbits in the DDLMLM group developed low levels of autologous Tier 2 NAbs. The humoral immune responses elicited against HIV-1 Env by the recombinant LSDVGC5 were comparable to those induced by MVAGC5.

4.
Front Plant Sci ; 12: 709344, 2021.
Article in English | MEDLINE | ID: mdl-34367227

ABSTRACT

There is an urgent need to establish large scale biopharmaceutical manufacturing capacity in Africa where the infrastructure for biologics production is severely limited. Molecular farming, whereby pharmaceuticals are produced in plants, offers a cheaper alternative to mainstream expression platforms, and is amenable to rapid large-scale production. However, there are several differences along the plant protein secretory pathway compared to mammalian systems, which constrain the production of complex pharmaceuticals. Viral envelope glycoproteins are important targets for immunization, yet in some cases they accumulate poorly in plants and may not be properly processed. Whilst the co-expression of human chaperones and furin proteases has shown promise, it is presently unclear how plant-specific differences in glycosylation impact the production of these proteins. In many cases it may be necessary to reproduce features of their native glycosylation to produce immunologically relevant vaccines, given that glycosylation is central to the folding and immunogenicity of these antigens. Building on previous work, we transiently expressed model glycoproteins from HIV and Marburg virus in Nicotiana benthamiana and mammalian cells. The proteins were purified and their site-specific glycosylation was determined by mass-spectrometry. Both glycoproteins yielded increased amounts of protein aggregates when produced in plants compared to the equivalent mammalian cell-derived proteins. The glycosylation profiles of the plant-produced glycoproteins were distinct from the mammalian cell produced proteins: they displayed lower levels of glycan occupancy, reduced complex glycans and large amounts of paucimannosidic structures. The elucidation of the site-specific glycosylation of viral glycoproteins produced in N. benthamiana is an important step toward producing heterologous viral glycoproteins in plants with authentic human-like glycosylation.

5.
Vaccine ; 39(3): 463-468, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33342638

ABSTRACT

Two HIV-1 vaccines (SAAVI DNA-C2 and SAAVI MVA-C) were previously developed in South Africa and tested in preclinical studies and Phase 1 clinical trials. Here we report on improvements made to the SAAVI MVA-C vaccine design which include: the use of different promoters for both the Gag and Env genes, replacement of the native Gag gene with an in silico designed subtype C mosaic Gag antigen which forms virus-like particles and the modification of Env by sequence changes to improve stability and transport to the cell surface. A head-to-head comparison of the newly conceived MVAGD5 candidate vaccine with SAAVI MVA-C showed increased in vitro expression of both Env and Gag, and superior immunogenicity in rabbits. MVAGD5 induced high levels of binding antibodies to Env and Tier 1A and 1B neutralizing antibodies, neither of which were induced by SAAVI MVA-C.


Subject(s)
AIDS Vaccines , HIV-1 , Vaccines, DNA , Animals , HIV Antibodies , HIV-1/genetics , Immunization, Secondary , Rabbits , South Africa
6.
Article in English | MEDLINE | ID: mdl-32328488

ABSTRACT

HIV-1 envelope glycoprotein (Env) remains the most relevant target for the elicitation of functional antibodies to HIV by vaccination. However, soluble Env antigens often do not elicit the desired immune responses. Delivering subunit antigens on particulate nanoparticles is an established approach to improve their immunogenicity. In this study the sequence encoding Zera®, a proline-rich domain derived from the γ-zein storage protein, was fused to either the C- or N-terminus of the superinfecting HIV-1 CAP256 gp140 envelope: Zera® generally induces the formation of protein bodies (PBs), which can significantly improve both the immunogenicity and yields of the partner protein. The expression of gp140-Zera® and Zera®-gp140 (N- and C-terminal fusions respectively) in mammalian cells was confirmed by western blot analysis and immunostaining. However, isopycnic ultracentrifugation showed that neither gp140-Zera® nor Zera®-gp140 accumulated in characteristic electron-dense PBs. gp140-Zera® elicited higher binding antibody titers in rabbits to autologous gp140 and V1V2 scaffold than Zera®-gp140. Rabbit anti-gp140-Zera® sera also had significantly higher Tier 1A neutralizing antibody titers than anti-Zera®-gp140 sera. Neither gp140-Zera® nor Zera®-gp140-specific sera neutralized Tier 1B or autologous Tier 2 viruses. These results showed that HIV-1 gp140 tagged with Zera® at either the N- or C-termini elicited high titers of gp140 and V1V2 binding antibodies, and low levels of Tier 1 neutralizing antibodies in rabbits.

7.
Vaccines (Basel) ; 8(1)2020 Jan 29.
Article in English | MEDLINE | ID: mdl-32013223

ABSTRACT

The HIV-1 envelope glycoprotein (Env) is present on the surface of the virion at a very low density compared to most other enveloped viruses. Substitution of various parts of the stalk domain of Env (gp41) with the corresponding elements from other viral glycoproteins has been shown to increase Env spike density on the cell membrane and surface of virus-like particles (VLPs). In this study, chimeric Env antigens were generated by replacing the transmembrane and cytoplasmic domains of HIV-1 Env with the corresponding regions from the influenza H5 hemagglutinin (HA) (gp140HA2tr) and by replacing the entire gp41 region of Env with the HA2 subunit of HA (gp120HA2). Recombinant DNA and modified vaccinia Ankara (MVA) vaccines expressing HIV-1 subtype C mosaic Gag and gp150 Env or either of the chimeras were generated. Surprisingly, no significant differences were found in the levels of expression of gp150 Env or either of the chimeras on the surface of cells or on Gag VLPs. Differences were, however, observed in the binding of different monoclonal antibodies to the HIV-1 Env. Monoclonal antibodies, which recognized a V1 / V2 quaternary epitope at the tip of the native Env trimer, bound gp150 and gp140HA2tr chimera but failed to bind to the gp120HA2 chimera. Autologous Tier 2 neutralizing antibodies (NAbs) were produced by rabbits inoculated with DNA and MVA vaccines expressing the gp140HA2tr chimera or gp150 Env, but not those immunized with the gp120HA2 Env. These results showed that the addition of an HA2 stalk to HIV-1 gp120 did not improve immunogenicity, but rather that the full-length gp150 was required for optimal presentation of epitopes for the elicitation of a neutralizing antibody response to HIV-1.

8.
Front Plant Sci ; 10: 1378, 2019.
Article in English | MEDLINE | ID: mdl-31737007

ABSTRACT

The development of effective vaccines is urgently needed to curb the spread of human immunodeficiency virus type 1 (HIV-1). A major focal point of current HIV vaccine research is the production of soluble envelope (Env) glycoproteins which reproduce the structure of the native gp160 trimer. These antigens are produced in mammalian cells, which requires a sophisticated infrastructure for manufacture that is mostly absent in developing countries. The production of recombinant proteins in plants is an attractive alternative for the potentially cheap and scalable production of vaccine antigens, especially for developing countries. In this study, we developed a transient expression system in Nicotiana benthamiana for the production of soluble HIV Env gp140 antigens based on two rationally selected virus isolates (CAP256 SU and Du151). The scalability of the platform was demonstrated and both affinity and size exclusion chromatography (SEC) were explored for recovery of the recombinant antigens. Rabbits immunized with lectin affinity-purified antigens developed high titres of binding antibodies, including against the V1V2 loop region, and neutralizing antibodies against Tier 1 viruses. The removal of aggregated Env species by gel filtration resulted in the elicitation of superior binding and neutralizing antibodies. Furthermore, a heterologous prime-boost regimen employing a recombinant modified vaccinia Ankara (rMVA) vaccine, followed by boosts with the SEC-purified protein, significantly improved the immunogenicity. To our knowledge, this is the first study to assess the immunogenicity of a near-full length plant-derived Env vaccine immunogen.

9.
J Virol ; 93(8)2019 04 15.
Article in English | MEDLINE | ID: mdl-30760570

ABSTRACT

A vaccine regimen that elicits broadly neutralizing antibodies (bNAbs) is a major goal in HIV-1 vaccine research. In this study, we assessed the immunogenicity of the CAP256 superinfecting viral envelope (CAP256 SU) protein delivered by modified vaccinia virus Ankara (MVA) and DNA vaccines in different prime-boost combinations followed by a soluble protein (P) boost. The envelope protein (Env) contained a flexible glycine linker and I559P mutation. Trimer-specific bNAbs PGT145, PG16, and CAP256 VRC26_08 efficiently bound to the membrane-bound CAP256 envelope expressed on the surface of cells transfected or infected with the DNA and MVA vaccines. The vaccines were tested in two different vaccination regimens in rabbits. Both regimens elicited autologous tier 2 neutralizing antibodies (NAbs) and high-titer binding antibodies to the matching CAP256 Env and CAP256 V1V2 loop scaffold. The immunogenicity of DNA and MVA vaccines expressing membrane-bound Env alone was compared to that of Env stabilized in a more native-like conformation on the surface of Gag virus-like particles (VLPs). The inclusion of Gag in the DNA and MVA vaccines resulted in earlier development of tier 2 NAbs for both vaccination regimens. In addition, a higher proportion of the rabbits primed with DNA and MVA vaccines that included Gag developed tier 2 NAbs than did those primed with vaccine expressing Env alone. Previously, these DNA and MVA vaccines expressing subtype C mosaic HIV-1 Gag were shown to elicit strong T cell responses in mice. Here we show that when the CAP256 SU envelope protein is included, these vaccines elicit autologous tier 2 NAbs.IMPORTANCE A vaccine is urgently needed to combat HIV-1, particularly in sub-Saharan Africa, which remains disproportionately affected by the AIDS pandemic and accounts for the majority of new infections and AIDS-related deaths. In this study, two different vaccination regimens were compared. Rabbits that received two DNA primes followed by two modified vaccinia virus Ankara (MVA) and two protein inoculations developed better immune responses than those that received two MVA and three protein inoculations. In addition, DNA and MVA vaccines that expressed mosaic Gag VLPs presenting a stabilized Env antigen elicited better responses than Env alone, which supports the inclusion of Gag VLPs in an HIV-1 vaccine.


Subject(s)
AIDS Vaccines , Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV-1 , Immunization, Secondary , Vaccines, DNA , Vaccinia virus , env Gene Products, Human Immunodeficiency Virus , AIDS Vaccines/genetics , AIDS Vaccines/immunology , Animals , Female , HEK293 Cells , HIV-1/genetics , HIV-1/immunology , Humans , Rabbits , Vaccines, DNA/genetics , Vaccines, DNA/immunology , env Gene Products, Human Immunodeficiency Virus/genetics , env Gene Products, Human Immunodeficiency Virus/immunology
10.
PLoS One ; 13(12): e0208310, 2018.
Article in English | MEDLINE | ID: mdl-30557314

ABSTRACT

With the HIV-1 epidemic in southern Africa still rising, a prophylactic vaccine against the region's most prolific subtype (subtype C) would be a significant step forward. In this paper we report on the effect of 2 different adjuvants, AddaVax and AlhydroGel, formulated with HIV-1 subtype C gp140, on the development of binding and neutralising antibody titres in rabbits. AddaVax is a squalene-based oil-in-water nano-emulsion (similar to MF59) which can enhance both cellular and humoral immune responses, whilst AlhydroGel (aluminium hydroxide gel) mainly drives a Th2 response. The gp140 gene tested was derived from the superinfecting virus (SU) from participant CAP256 in the CAPRISA 002 Acute infection cohort. The furin cleavage site of the Env protein was replaced with a flexible linker and an I559P mutation introduced. Lectin affinity purified soluble Env protein was mainly trimeric as judged by molecular weight using BN-PAGE and contained intact broadly neutralising epitopes for the V3-glycan supersite (monoclonal antibodies PGT128 and PGT135), the CD4 binding site (VRC01) and the V2-glycan (PG9) but not for the trimer-specific monoclonal antibodies PG16, PGT145 and CAP256-VRC26_08. When this soluble Env protein was tested in rabbits, AlhydroGel significantly enhanced soluble Env and V1V2 binding antibodies when compared to AddaVax. Finally, AlhydroGel resulted in significantly higher neutralization titres for a subtype C Tier 1A virus (MW965.26) and increased neutralization breadth to Tier 1A and 1B viruses. However, no autologous Tier 2 neutralisation was observed. These data suggest that adjuvant selection is critical for developing a successful vaccine and AlhydroGel should be further investigated. Additional purification of trimeric native-like CAP256 Env and/or priming with DNA or MVA might enhance the induction of neutralizing antibodies and possible Tier 2 HIV-1 neutralisation.


Subject(s)
Adjuvants, Immunologic/pharmacology , HIV Antibodies/metabolism , HIV-1/metabolism , Polysorbates/pharmacology , Squalene/pharmacology , env Gene Products, Human Immunodeficiency Virus/metabolism , AIDS Vaccines/immunology , Antibodies, Neutralizing/metabolism , HEK293 Cells , HIV Antibodies/blood , Humans , Immunization
11.
Mol Biochem Parasitol ; 223: 50-54, 2018 07.
Article in English | MEDLINE | ID: mdl-29990512

ABSTRACT

African animal trypanosomosis (nagana) is caused by tsetse-transmitted protozoan parasites. Their cysteine proteases are potential chemotherapeutic and diagnostic targets. The N-glycosylated catalytic domain of Trypanosoma vivax cathepsin L-like cysteine protease, rTviCATLcat, was recombinantly expressed and purified from culture supernatants while native TviCATL was purified from T. vivax Y486 parasite lysates. Typical of Clan CA, family C1 proteases, TviCATL activity is sensitive to E-64 and cystatin and substrate specificity is defined by the S2 pocket. Leucine was preferred in P2 and basic and non-bulky, hydrophobic residues accepted in P1 and P3 respectively. Reversible aldehyde inhibitors, antipain, chymostatin and leupeptin, with Arg in P1 and irreversible peptidyl chloromethylketone inhibitors with hydrophobic residues in P2 inhibited TviCATL activity. TviCATL digested host proteins: bovine haemoglobin, serum albumin, fibrinogen and denatured collagen (gelatine) over a wide pH range, including neutral to slightly acidic pH. The recombinant catalytic domain of TviCATL showed promise as a diagnostic target for detecting T. vivax infection in cattle in an indirect antibody detection ELISA.


Subject(s)
Cattle Diseases/diagnosis , Cysteine Proteases/metabolism , Immunoassay/methods , Recombinant Proteins/metabolism , Trypanosoma vivax/enzymology , Trypanosomiasis, African/diagnosis , Animals , Binding Sites , Cattle , Cysteine Proteases/genetics , Cysteine Proteases/immunology , DNA Mutational Analysis , Enzyme-Linked Immunosorbent Assay/methods , Hydrogen-Ion Concentration , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Substrate Specificity , Trypanosoma vivax/genetics , Trypanosoma vivax/immunology , Trypanosomiasis, African/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...