Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Clin Exp Pathol ; 14(11): 1069-1079, 2021.
Article in English | MEDLINE | ID: mdl-34900075

ABSTRACT

AIM: To report pathologic findings in the gastrointestinal (GI) tract of coronavirus disease 2019 (COVID-19) patients. MATERIAL AND METHODS: we evaluated clinical and GI tract histologic findings in six COVID-19 patients that presented with GI symptoms like diarrhea, and abdominal pain. This study includes surgical resection specimens from five patients and two sets of biopsy specimens from one patient. RESULTS: Idiopathic inflammatory bowel disease was considered in three of six cases based on clinical, radiologic, and endoscopic presentation. Histologically, the enteric mucosa had a spectrum of histologic changes, including active enteritis, chronic active enteritis, and transmural necrosis. Extensive thrombi in vessels and/or vasculitis were identified in three out of the six cases. The presence of extensive vascular thrombi is associated with poor prognosis, and the three patients deceased in a short period of time (ranges from 7-67 days, median 14 days) after admission for GI symptoms. Severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) RNA was detected in bowel tissue of one case. The other three patients recovered and were discharged and free of GI symptoms (follow-up period ranges from 235 days to 270 days, median 237 days). CONCLUSION: COVID-19 associated enteritis may mimic Crohn's disease clinically, radiologically and endoscopically, and these two entities can be differentiated by pathologic findings. COVID-19 patients with GI symptoms may warrant a workup to evaluate for pathologic changes, as the presence of vasculitis and microthrombi may predict poor clinical outcome.

2.
J Med Chem ; 63(13): 6600-6623, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32058712

ABSTRACT

The pivotal role of calcitonin gene-related peptide (CGRP) in migraine pathophysiology was identified over 30 years ago, but the successful clinical development of targeted therapies has only recently been realized. This Perspective traces the decades long evolution of medicinal chemistry required to advance small molecule CGRP receptor antagonists, also called gepants, including the current clinical agents rimegepant, vazegepant, ubrogepant, and atogepant. Providing clinically effective blockade of CGRP signaling required surmounting multiple challenging hurdles, including defeating a sizable ligand with subnanomolar affinity for its receptor, designing antagonists with an extended confirmation and multiple pharmacophores while retaining solubility and oral bioavailability, and achieving circulating free plasma levels that provided near maximal CGRP receptor coverage. The clinical efficacy of oral and intranasal gepants and the injectable CGRP monoclonal antibodies (mAbs) are described, as are recent synthetic developments that have benefited from new structural biology data. The first oral gepant was recently approved and heralds a new era in the treatment of migraine.


Subject(s)
Calcitonin Gene-Related Peptide/metabolism , Migraine Disorders/drug therapy , Migraine Disorders/prevention & control , Signal Transduction/drug effects , Animals , Calcitonin Gene-Related Peptide Receptor Antagonists/pharmacology , Calcitonin Gene-Related Peptide Receptor Antagonists/therapeutic use , Humans , Migraine Disorders/metabolism , Migraine Disorders/pathology , Receptors, Calcitonin Gene-Related Peptide/metabolism
3.
Haematologica ; 102(10): 1785-1795, 2017 10.
Article in English | MEDLINE | ID: mdl-28729299

ABSTRACT

Despite use of newer approaches, some patients being considered for autologous hematopoietic cell transplantation (HCT) may only mobilize limited numbers of hematopoietic progenitor cells (HPCs) into blood, precluding use of the procedure, or being placed at increased risk of complications due to slow hematopoietic reconstitution. Developing more efficacious HPC mobilization regimens and strategies may enhance the mobilization process and improve patient outcome. Although Notch signaling is not essential for homeostasis of adult hematopoietic stem cells (HSCs), Notch-ligand adhesive interaction maintains HSC quiescence and niche retention. Using Notch receptor blocking antibodies, we report that Notch2 blockade, but not Notch1 blockade, sensitizes hematopoietic stem cells and progenitors (HSPCs) to mobilization stimuli and leads to enhanced egress from marrow to the periphery. Notch2 blockade leads to transient myeloid progenitor expansion without affecting HSC homeostasis and self-renewal. We show that transient Notch2 blockade or Notch2-loss in mice lacking Notch2 receptor lead to decreased CXCR4 expression by HSC but increased cell cycling with CXCR4 transcription being directly regulated by the Notch transcriptional protein RBPJ. In addition, we found that Notch2-blocked or Notch2-deficient marrow HSPCs show an increased homing to the marrow, while mobilized Notch2-blocked, but not Notch2-deficient stem cells and progenitors, displayed a competitive repopulating advantage and enhanced hematopoietic reconstitution. These findings suggest that blocking Notch2 combined with the current clinical regimen may further enhance HPC mobilization and improve engraftment during HCT.


Subject(s)
Antineoplastic Agents/pharmacology , Hematopoietic Stem Cell Mobilization , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/metabolism , Receptor, Notch2/antagonists & inhibitors , Animals , Antineoplastic Agents/therapeutic use , Bone Marrow Cells/drug effects , Bone Marrow Cells/metabolism , Cell Cycle/drug effects , Cell Cycle/genetics , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Movement/drug effects , Cell Self Renewal/drug effects , Cell Self Renewal/genetics , Gene Expression Regulation/drug effects , Hematopoietic Stem Cell Mobilization/methods , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Hematopoietic Stem Cells/cytology , Humans , Mice , Mice, Transgenic , Receptor, Notch2/deficiency , Receptor, Notch2/metabolism , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...