Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Sens ; 9(2): 736-744, 2024 02 23.
Article in English | MEDLINE | ID: mdl-38346401

ABSTRACT

The expression of microRNA (miRNA) changes in many diseases plays an important role in the diagnosis, treatment, and prognosis of diseases. Spinal cord injury (SCI) is a serious disease of the central nervous system, accompanied by inflammation, cell apoptosis, neuronal necrosis, axonal rupture, demyelination, and other pathological processes, resulting in impaired sensory and motor functions of patients. Studies have shown that miRNA expression has changed after SCI, and miRNAs participate in the pathophysiological process and treatment of SCI. Therefore, quantitative analysis and monitoring of the expression of miRNA were of great significance for the diagnosis and treatment of SCI. Through the SCI-related miRNA chord plot, we screened out miRNA-21-5p and miRNA-let-7a with a higher correlation. However, for traditional detection strategies, it is still a great challenge to achieve a fast, accurate, and sensitive detection of miRNA in complex biological environments. The most frequently used method for detecting miRNAs is polymerase chain reaction (PCR), but it has disadvantages such as being time-consuming and cumbersome. In this paper, a novel SERS sensor for the quantitative detection of miRNA-21-5p and miRNA-let-7a in serum and cerebrospinal fluid (CSF) was developed. The SERS probe eventually formed a sandwich-like structure of Fe3O4@hpDNA@miRNA@hpDNA@GNCs with target miRNAs, which had high specificity and stability. This SERS sensor achieved a wide range of detection from 1 fM to 1 nM and had a good linear relationship. The limits of detection (LOD) for miRNA-21-5p and miRNA-let-7a were 0.015 and 0.011 fM, respectively. This new strategy realized quantitative detection and long-term monitoring of miRNA-21-5p and miRNA-let-7a in vivo. It is expected to become a powerful biomolecule analysis tool and will provide ideas for the diagnosis and treatment of many diseases.


Subject(s)
MicroRNAs , Spinal Cord Injuries , Humans , Polymerase Chain Reaction , Limit of Detection , Prognosis , Spinal Cord Injuries/diagnosis , Spinal Cord Injuries/genetics
2.
Front Bioeng Biotechnol ; 11: 1128934, 2023.
Article in English | MEDLINE | ID: mdl-36873360

ABSTRACT

Introduction: Interleukin-6 (IL-6) is a multifunctional polypeptide cytokine composed of two glycoprotein chains, which plays an important role in many cellular reactions, pathological processes, diagnosis and treatment of diseases and so on. The detection of IL-6 plays a promising role in the cognition of clinical diseases. Methods: 4-mercaptobenzoic acid (4-MBA) was immobilized on the gold nanoparticles modified platinum carbon (PC) electrode with the linker IL-6 antibody, and finally formed an electrochemical sensor that specifically recognized IL-6. Through the highly specific antigen-antibody reaction, the IL-6 concentration of the samples to be detected. The performance of the sensor was studied by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Results: The experimental results showed that the linear detection range of the sensor for IL-6 was 100 pg/mL-700 pg/mL and the detection limit was 3 pg/mL. In addition, the sensor had the advantages of high specificity, high sensitivity, high stability and reproducibility under the interference environment of bovine serum albumin (BSA), glutathione (GSH), glycine (Gly) and neuron specific enolase (NSE), which provided a prospect for specific antigen detection sensor. Discussion: The prepared electrochemical sensor successfully detected the content of IL-6 in standard and biological samples, showing excellent detection performance. No significant difference was found between the detection results of the sensor and that of ELISA. The sensor showed a very broad prospect in the application and detection of clinical samples.

SELECTION OF CITATIONS
SEARCH DETAIL
...