Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Dig Dis ; 24(6-7): 408-418, 2023.
Article in English | MEDLINE | ID: mdl-37529891

ABSTRACT

OBJECTIVES: To determine whether hyperammonemia has a direct impact on steatohepatitis in mice fed with a high-fat diet (HFD). METHODS: Male C57BL/6 mice were divided into two groups receiving either chow diet or HFD. After 12-week NASH modeling, hyperammonemia was induced by intragastric administration of ammonium chloride solution (NH4 Cl) or liver-specific carbamoyl phosphate synthetase 1 (Cps1) knockdown. In vitro experiments were performed in HepG2 cells induced by free fatty acid (FFA) and NH4 Cl. RESULTS: NH4 Cl administration led to increased levels of plasma and hepatic ammonia in NASH mice. NH4 Cl-induced hyperammonemia did not influence liver histological changes in mice fed with HFD; however, elevated plasma cholesterol level, and an increasing trend of liver lipid content were observed. No significant effect of hyperammonemia on hepatic inflammation and fibrosis in NASH mice was found. In vitro cell experiments showed that NH4 Cl treatment failed to increase the lipid droplet content and the expressions of de novo lipogenesis genes in HepG2 cells induced by FFA. The knockdown of Cps1 in HFD-fed mice resulted in elevated plasma ammonia levels but did not cause histological change in the liver. CONCLUSIONS: Our study revealed a limited role of ammonia in aggravating the progression of NASH. Further studies are needed to clarify the role and mechanism of ammonia in NASH development.


Subject(s)
Hyperammonemia , Non-alcoholic Fatty Liver Disease , Male , Mice , Animals , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/metabolism , Hyperammonemia/complications , Hyperammonemia/metabolism , Ammonia/metabolism , Mice, Inbred C57BL , Liver/pathology , Diet, High-Fat/adverse effects , Disease Models, Animal
2.
Front Nutr ; 9: 808497, 2022.
Article in English | MEDLINE | ID: mdl-35369074

ABSTRACT

Recent studies have revealed that sarcopenia is closely associated with obesity and non-alcoholic steatohepatitis (NASH). However, few attempted to explore the cause-and-effect relationship between sarcopenic obesity and NASH. In this study, we investigated muscular alterations in a rodent NASH model to elucidate their intrinsic relations and explore the potential therapeutic target. Forty-six 8-week-old and twenty 42-week-old male C57BL/6 mice (defined as young and middle-aged mice, respectively) were fed with a high-fat diet (HFD) for 12 or 20 weeks. A subset of young mice was subjected to ammonia lowering treatment by L-ornithine L-aspartate (LOLA). We examined body composition and muscle strength by nuclear magnetic resonance and grip strength meter, respectively. At the end of the 12th week, all HFD-fed mice developed typical steatohepatitis. Meanwhile, sarcopenia occurred in HFD-fed middle-aged mice, whereas young mice only demonstrated decreased grip strength. Until the end of week 20, young mice in the HFD group exhibited significant sarcopenia and obesity phenotypes, including decreased lean body mass and grip strength, and increased body fat mass and percentage body fat. Additionally, plasma ammonia level was markedly increased in HFD-fed mice of both ages at week 20. Plasma ammonia level was negatively associated with muscle strength and myofiber diameter in young mice. LOLA can significantly reduce plasma levels of ammonia, alanine aminotransaminase, aspartate aminotransaminase, and cholesterol in mice fed an HFD. Hepatic infiltration of inflammatory cells and collagen deposition area were significantly decreased in HFD group by LOLA treatment. Meanwhile, LOLA significantly increased lean body mass, grip strength, and average muscle fiber diameter of HFD-fed mice. These findings suggest that the occurrence of NASH precedes sarcopenia in HFD mice, and the steatohepatitis-related hyperammonemia might contribute to the pathogenesis of sarcopenia. LOLA might be an effective drug for both steatohepatitis and sarcopenic obesity.

3.
Cell Mol Gastroenterol Hepatol ; 13(3): 827-841, 2022.
Article in English | MEDLINE | ID: mdl-34902629

ABSTRACT

BACKGROUND & AIMS: Gut microbiota and microbial factors regulate the pathogenesis of nonalcoholic fatty liver disease (NAFLD) in patients with obesity and metabolic abnormalities, but little is known about their roles in nonobese NAFLD. Expansion of Escherichia is associated with NAFLD pathogenesis. We aimed to investigate the pathogenic role of Escherichia fergusonii and its products in the development of nonobese NAFLD. METHODS: We characterized the intestinal microbiome signature in a cohort of NAFLD patients and healthy controls by 16S ribosomal RNA sequencing. The role of E fergusonii was estimated in rats after 16 weeks of administration, and features of NAFLD were assessed. E fergusonii-derived microRNA-sized, small RNAs (msRNAs) were analyzed by deep sequencing. RESULTS: We detected an expansion of Escherichia_Shigella in NAFLD patients compared with healthy controls, and its increase was associated with disease severity independent of obesity. E fergusonii, a member of the genus Escherichia, induced the development of nonobese NAFLD characterized by hepatic steatosis and hepatocyte ballooning in rats without obesity. It disturbed host lipid metabolism by inhibiting hepatic lipid ß-oxidation and promoting de novo lipogenesis. We also showed that E fergusonii caused the development of hepatic inflammation and fibrosis in a sizable fraction of animals at an advanced stage of NAFLD. Mechanistically, E fergusonii-derived msRNA 23487 down-regulated host hepatic peroxisome proliferator-activated receptor α expression, which could contribute to lipid accumulation in the liver. CONCLUSIONS: These results suggest that E fergusonii promotes the pathogenesis of steatohepatitis and fibrosis in nonobese rats by secreting msRNA 23487, and it might be a potential biomarker for predicting steatohepatitis in nonobese NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Escherichia , Humans , Lipid Metabolism , Non-alcoholic Fatty Liver Disease/pathology , Rats
4.
Cell Mol Gastroenterol Hepatol ; 12(3): 857-871, 2021.
Article in English | MEDLINE | ID: mdl-33989817

ABSTRACT

BACKGROUND AND AIMS: Butyric acid is an intestinal microbiota-produced short-chain fatty acid, which exerts salutary effects on alleviating nonalcoholic fatty liver disease (NAFLD). However, the underlying mechanism of butyrate on regulating hepatic lipid metabolism is largely unexplored. METHODS: A mouse model of NAFLD was induced with high-fat diet feeding, and sodium butyrate (NaB) intervention was initiated at the eighth week and lasted for 8 weeks. Hepatic steatosis was evaluated and metabolic pathways concerning lipid homeostasis were analyzed. RESULTS: Here, we report that administration of NaB by gavage once daily for 8 weeks causes an augmentation of insulin-induced gene (Insig) activity and inhibition of lipogenic gene in mice fed with high-fat diet. Mechanistically, NaB is sufficient to enhance the interaction between Insig and its upstream kinase AMP-activated protein kinase (AMPK). The stimulatory effects of NaB on Insig-1 activity are abolished in AMPKα1/α2 double knockout (AMPK-/-) mouse primary hepatocytes. Moreover, AMPK activation by NaB is mediated by LKB1, as evidenced by the observations showing NaB-mediated induction of phosphorylation of AMPK, and its downstream target acetyl-CoA carboxylase is diminished in LKB1-/- mouse embryonic fibroblasts. CONCLUSIONS: These studies indicate that NaB serves as a negative regulator of hepatic lipogenesis in NAFLD and that NaB attenuates hepatic steatosis and improves lipid profile and liver function largely through the activation of LKB1-AMPK-Insig signaling pathway. Therefore, NaB has therapeutic potential for treating NAFLD and related metabolic diseases.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Butyric Acid/pharmacology , Dietary Supplements , Gene Expression Regulation , Insulin/metabolism , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Animals , Diet, High-Fat , Disease Models, Animal , Gene Expression Regulation/drug effects , Hepatocytes/metabolism , Humans , Insulin/pharmacology , Lipid Metabolism/drug effects , Lipogenesis/drug effects , Lipogenesis/genetics , MAP Kinase Signaling System/drug effects , Male , Mice , Models, Biological , Non-alcoholic Fatty Liver Disease/pathology , Phosphorylation
5.
World J Gastroenterol ; 26(18): 2203-2220, 2020 May 14.
Article in English | MEDLINE | ID: mdl-32476787

ABSTRACT

BACKGROUND: Folic acid has been shown to improve non-alcoholic steatohepatitis (NASH), but its roles in hepatic lipid metabolism, hepatic one-carbon metabolism, and gut microbiota are still unknown. AIM: To demonstrate the role of folic acid in lipid metabolism and gut microbiota in NASH. METHODS: Twenty-four Sprague-Dawley rats were assigned into three groups: Chow diet, high-fat diet (HFD), and HFD with folic acid administration. At the end of 16 wk, the liver histology, the expression of hepatic genes related to lipid metabolism, one-carbon metabolism, and gut microbiota structure analysis of fecal samples based on 16S rRNA sequencing were measured to evaluate the effect of folic acid. Palmitic acid-exposed Huh7 cell line was used to evaluate the role of folic acid in hepatic lipid metabolism. RESULTS: Folic acid treatment attenuated steatosis, lobular inflammation, and hepatocellular ballooning in rats with HFD-induced steatohepatitis. Genes related to lipid de novo lipogenesis, ß-oxidation, and lipid uptake were improved in HFD-fed folic acid-treated rats. Furthermore, peroxisome proliferator-activated receptor alpha (PPARα) and silence information regulation factor 1 (SIRT1) were restored by folic acid in HFD-fed rats and palmitic acid-exposed Huh7 cell line. The restoration of PPARα by folic acid was blocked after transfection with SIRT1 siRNA in the Huh7 cell line. Additionally, folic acid administration ameliorated depleted hepatic one-carbon metabolism and restored the diversity of the gut microbiota in rats with HFD-induced steatohepatitis. CONCLUSION: Folic acid improves hepatic lipid metabolism by upregulating PPARα levels via a SIRT1-dependent mechanism and restores hepatic one-carbon metabolism and diversity of gut microbiota, thereby attenuating HFD-induced NASH in rats.


Subject(s)
Folic Acid/pharmacology , Gastrointestinal Microbiome/drug effects , Non-alcoholic Fatty Liver Disease/drug therapy , PPAR alpha/metabolism , Sirtuin 1/metabolism , Animals , Cell Line, Tumor , DNA, Bacterial/isolation & purification , Diet, High-Fat/adverse effects , Disease Models, Animal , Feces/microbiology , Folic Acid/therapeutic use , Gastrointestinal Microbiome/genetics , Humans , Lipid Metabolism/drug effects , Liver/drug effects , Liver/metabolism , Liver/pathology , Male , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/pathology , RNA, Ribosomal, 16S/genetics , RNA, Small Interfering/metabolism , Rats , Sirtuin 1/genetics , Up-Regulation/drug effects
6.
J Dig Dis ; 21(3): 179-188, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31950587

ABSTRACT

OBJECTIVES: We aimed to investigate the therapeutic mechanism of Yinzhihuang (YZH) liquid, a traditional Chinese medicine mainly composed of extracts of four components, on nonalcoholic steatohepatitis (NASH) induced by a high-fat, high-cholesterol diet (HFHCD) in rats. METHODS: Altogether 30 Sprague-Dawley rats were randomized into three groups: control, the model group (HFHCD + saline) and the treatment group (HFHCD + YZH). Liver histological features and serum biochemical parameters were assessed by the end of the 16th week. RNA sequencing and protein mass spectrometry detection were performed. The genes and proteins expressed differentially were subjected to KEGG pathway enrichment analysis and included in a network-based regulatory model. RESULTS: The weight, liver and fat indices and serum alanine transaminase, aspartate transaminase and total cholesterol levels of the HFHCD + YZH group were all significantly lower than those of the HFHCD + saline group. Moreover, their hepatic steatosis, ballooning and lobular inflammation were relieved, and 64 hepatic genes and 73 hepatic proteins were found to be reversed in their expression patterns after YZH treatment (P < 0.05). The network-based regulatory model showed that these deregulated genes and proteins were mainly involved in oxidative phosphorylation, Toll-like receptor, nucleotide-binding oligomerization domain-like receptor, peroxisome proliferator-activated receptor signaling, nuclear factor-kappa B tumor necrosis factor signaling pathways and fatty acid metabolism. CONCLUSION: YZH could alleviate NASH in HFHCD-fed rats by inhibiting lipogenesis, accelerating lipid ß-oxidation, alleviating oxidative stress and relieving necroinflammation in the liver.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Non-alcoholic Fatty Liver Disease/drug therapy , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases/blood , Cholesterol/blood , Cholesterol, Dietary/adverse effects , Diet, High-Fat/adverse effects , Disease Models, Animal , Inflammation , Lipid Metabolism/drug effects , Lipogenesis/drug effects , Liver/pathology , Male , Non-alcoholic Fatty Liver Disease/etiology , Oxidative Stress/drug effects , Rats , Rats, Sprague-Dawley
7.
Hepatology ; 72(2): 454-469, 2020 08.
Article in English | MEDLINE | ID: mdl-31782176

ABSTRACT

BACKGROUND AND AIMS: Hepatic macrophages can be activated by many factors such as gut-derived bacterial components and factors released from damaged hepatocytes. Macrophage polarization toward a proinflammatory phenotype (M1) represents an important event in the disease progression of nonalcoholic fatty liver disease (NAFLD). However, the underlying molecular mechanisms remain incompletely understood. Exosomes have been identified as important mediators for cell-cell communication by transferring various biological components such as microRNAs (miRs), proteins, and lipids. The role of exosomes in crosstalk between hepatocytes and macrophages in disease progression of NAFLD is yet to be explored. APPROACH AND RESULTS: In the present study, we reported that lipotoxic injury-induced release of hepatocyte exosomes enriched with miR-192-5p played a critical role in the activation of M1 macrophages and hepatic inflammation. Serum miR-192-5p levels in patients with NAFLD positively correlated with hepatic inflammatory activity score and disease progression. Similarly, the serum miR-192-5p level and the number of M1 macrophages, as well as the expression levels of the hepatic proinflammatory mediators, were correlated with disease progression in high-fat high-cholesterol diet-fed rat models. Lipotoxic hepatocytes released more miR-192-5p-enriched exosomes than controls, which induced M1 macrophage (cluster of differentiation 11b-positive [CD11b+ ]/CD86+ ) activation and increase of inducible nitric oxide synthase, interleukin 6, and tumor necrosis factor alpha expression. Furthermore, hepatocyte-derived exosomal miR-192-5p inhibited the protein expression of the rapamycin-insensitive companion of mammalian target of rapamycin (Rictor), which further inhibited the phosphorylation levels of Akt and forkhead box transcription factor O1 (FoxO1) and resulted in activation of FoxO1 and subsequent induction of the inflammatory response. CONCLUSIONS: Hepatocyte-derived exosomal miR-192-5p plays a critical role in the activation of proinflammatory macrophages and disease progression of NAFLD through modulating Rictor/Akt/FoxO1 signaling. Serum exosomal miR-192-5p represents a potential noninvasive biomarker and therapeutic target for nonalcoholic steatohepatitis.


Subject(s)
Exosomes/metabolism , Forkhead Transcription Factors/physiology , Hepatocytes/metabolism , Macrophage Activation/physiology , MicroRNAs/physiology , Non-alcoholic Fatty Liver Disease/etiology , Proto-Oncogene Proteins c-akt/physiology , Rapamycin-Insensitive Companion of mTOR Protein/physiology , Signal Transduction/physiology , Animals , Male , MicroRNAs/biosynthesis , Rats , Rats, Sprague-Dawley
8.
Lipids Health Dis ; 18(1): 179, 2019 Oct 21.
Article in English | MEDLINE | ID: mdl-31639005

ABSTRACT

BACKGROUND: Ceramide plays pathogenic roles in nonalcoholic fatty liver disease (NAFLD) via multiple mechanisms, and as such inhibition of ceramide de novo synthesis in the liver may be of therapeutically beneficial in patients with NAFLD. In this study, we aimed to explore whether inhibition of ceramide signaling by myriocin is beneficial in animal model of NAFLD via regulating autophagy. METHODS: Sprague Dawley rats were randomly divided into three groups: standard chow (n = 10), high-fat diet (HFD) (n = 10) or HFD combined with oral administration of myriocin (0.3 mg/kg on alternate days for 8 weeks) (n = 10). Liver histology and autophagy function were measured. HepG2 cells were incubated with fatty acid with or without myriocin treatment. Lipid accumulation and autophagy markers in the HepG2 cells were analyzed. Serum ceramide changes were studied in 104 subjects consisting healthy adults, liver biopsy-proven patients with NAFLD and liver biopsy-proven patients with chronic hepatitis B (CHB). RESULTS: Myriocin reversed the elevated body weight and serum transaminases and alleviated dyslipidemia in HFD fed rats. Myriocin treatment significantly attenuated liver pathology including steatosis, lobular inflammation and ballooning. By qPCR analysis, it was revealed that myriocin corrected the expression pattern of fatty acid metabolism associated genes including Fabp1, Pparα, Cpt-1α and Acox-2. Further, myriocin also restored the impaired hepatic autophagy function in rats with HFD-induced NASH, and this has been verified in HepG2 cells. Among the sphingolipid species that we screened in lipidomic profiles, significantly increased ceramide was observed in NASH patients as compared to the controls and non-NASH patients, regardless of whether or not they have active CHB. CONCLUSIONS: Ceramide may play an important regulatory role in the autophagy function in the pathogenesis of NASH. Hence, blockade of ceramide signaling by myriocin may be of therapeutically beneficial in NASH. TRIAL REGISTRATION: Registration ID: ChiCTR-DDT-13003983 . Data of registration: 13 May, 2013, retrospectively registered.


Subject(s)
Autophagy/drug effects , Ceramides/metabolism , Dyslipidemias/drug therapy , Fatty Acids, Monounsaturated/pharmacology , Hypolipidemic Agents/pharmacology , Non-alcoholic Fatty Liver Disease/drug therapy , Adult , Animals , Autophagy/genetics , Carnitine O-Palmitoyltransferase/genetics , Carnitine O-Palmitoyltransferase/metabolism , Case-Control Studies , Ceramides/antagonists & inhibitors , Diet, High-Fat/adverse effects , Dyslipidemias/etiology , Dyslipidemias/genetics , Dyslipidemias/metabolism , Fatty Acid-Binding Proteins/genetics , Fatty Acid-Binding Proteins/metabolism , Female , Gene Expression Regulation/drug effects , Hep G2 Cells , Hepatitis B, Chronic/genetics , Hepatitis B, Chronic/metabolism , Hepatitis B, Chronic/pathology , Hepatitis B, Chronic/virology , Humans , Lipid Metabolism , Liver/drug effects , Liver/metabolism , Liver/pathology , Male , Middle Aged , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Oleic Acid/antagonists & inhibitors , Oleic Acid/pharmacology , Oxidoreductases/genetics , Oxidoreductases/metabolism , PPAR alpha/genetics , PPAR alpha/metabolism , Palmitic Acid/antagonists & inhibitors , Palmitic Acid/pharmacology , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects
9.
Exp Mol Med ; 51(9): 1-14, 2019 09 10.
Article in English | MEDLINE | ID: mdl-31506421

ABSTRACT

Microbial metabolites have emerged as critical components that mediate the metabolic effects of the gut microbiota. Here, we show that indole-3-propionic acid (IPA), a tryptophan metabolite produced by gut bacteria, is a potent anti-non-alcoholic steatohepatitis (NASH) microbial metabolite. Here, we demonstrate that administration of IPA modulates the microbiota composition in the gut and inhibits microbial dysbiosis in rats fed a high-fat diet. IPA induces the expression of tight junction proteins, such as ZO-1 and Occludin, and maintains intestinal epithelium homeostasis, leading to a reduction in plasma endotoxin levels. Interestingly, IPA inhibits NF-κB signaling and reduces the levels of proinflammatory cytokines, such as TNFα, IL-1ß, and IL-6, in response to endotoxin in macrophages to repress hepatic inflammation and liver injury. Moreover, IPA is sufficient to inhibit the expression of fibrogenic and collagen genes and attenuate diet-induced NASH phenotypes. The beneficial effects of IPA on the liver are likely mediated through inhibiting the production of endotoxin in the gut. These findings suggest a protective role of IPA in the control of metabolism and uncover the gut microbiome and liver cross-talk in regulating the intestinal microenvironment and liver pathology via a novel dietary nutrient metabolite. IPA may provide a new therapeutic strategy for treating NASH.


Subject(s)
Gastrointestinal Microbiome/drug effects , Non-alcoholic Fatty Liver Disease/drug therapy , Occludin/genetics , Propionates/pharmacology , Zonula Occludens-1 Protein/genetics , Animals , Diet, High-Fat , Disease Models, Animal , Dysbiosis/drug therapy , Dysbiosis/genetics , Dysbiosis/metabolism , Dysbiosis/microbiology , Endotoxins/metabolism , Gastrointestinal Microbiome/genetics , Gene Expression Regulation/drug effects , Humans , Indoles/pharmacology , Interleukin-1beta , Interleukin-6/genetics , Liver/drug effects , Liver/injuries , Liver/pathology , Macrophages/drug effects , NF-kappa B/genetics , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/microbiology , Rats , Tryptophan/metabolism , Tumor Necrosis Factor-alpha/genetics
10.
World J Gastroenterol ; 25(20): 2450-2462, 2019 May 28.
Article in English | MEDLINE | ID: mdl-31171889

ABSTRACT

BACKGROUND: Trimethylamine N-oxide (TMAO) has been shown to be involved in cardiovascular disease (CVD). However, its role in nonalcoholic steatohepatitis (NASH) is unknown. AIM: To determine the effect of TMAO on the progression of NASH. METHODS: A rat model was induced by 16-wk high-fat high-cholesterol (HFHC) diet feeding and TMAO was administrated by daily oral gavage for 8 wk. RESULTS: Oral TMAO intervention attenuated HFHC diet-induced steatohepatitis in rats. Histological evaluation showed that TMAO treatment significantly alleviated lobular inflammation and hepatocyte ballooning in the livers of rats fed a HFHC diet. Serum levels of alanine aminotransferase and aspartate aminotransferase were also decreased by TMAO treatment. Moreover, hepatic endoplasmic reticulum (ER) stress and cell death were mitigated in HFHC diet-fed TMAO-treated rats. Hepatic and serum levels of cholesterol were both decreased by TMAO treatment in rats fed a HFHC diet. Furthermore, the expression levels of intestinal cholesterol transporters were detected. Interestingly, cholesterol influx-related Niemann-Pick C1-like 1 was downregulated and cholesterol efflux-related ABCG5/8 were upregulated by TMAO treatment in the small intestine. Gut microbiota analysis showed that TMAO could alter the gut microbial profile and restore the diversity of gut flora. CONCLUSION: These data suggest that TMAO may modulate the gut microbiota, inhibit intestinal cholesterol absorption, and ameliorate hepatic ER stress and cell death under cholesterol overload, thereby attenuating HFHC diet-induced steatohepatitis in rats. Further studies are needed to evaluate the influence on CVD and define the safe does of TMAO treatment.


Subject(s)
Liver/drug effects , Methylamines/administration & dosage , Non-alcoholic Fatty Liver Disease/drug therapy , Administration, Oral , Animals , Cholesterol, Dietary/adverse effects , Cholesterol, Dietary/metabolism , Diet, High-Fat/adverse effects , Disease Models, Animal , Disease Progression , Drug Evaluation, Preclinical , Endoplasmic Reticulum Stress/drug effects , Gastrointestinal Microbiome/drug effects , Humans , Intestinal Absorption/drug effects , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Liver/pathology , Male , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/pathology , Rats , Rats, Sprague-Dawley , Treatment Outcome
11.
Exp Mol Med ; 50(12): 1-12, 2018 12 03.
Article in English | MEDLINE | ID: mdl-30510243

ABSTRACT

Glucagon-like peptide-1 (GLP-1) has a broad spectrum of biological activity by regulating metabolic processes via both the direct activation of the class B family of G protein-coupled receptors and indirect nonreceptor-mediated pathways. GLP-1 receptor (GLP-1R) agonists have significant therapeutic effects on non-alcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH) in animal models. However, clinical studies indicated that GLP-1 treatment had little effect on hepatic steatosis in some NAFLD patients, suggesting that GLP-1 resistance may occur in these patients. It is well-known that the gut metabolite sodium butyrate (NaB) could promote GLP-1 secretion from intestinal L cells. However, it is unclear whether NaB improves hepatic GLP-1 responsiveness in NAFLD. In the current study, we showed that the serum GLP-1 levels of NAFLD patients were similar to those of normal controls, but hepatic GLP-1R expression was significantly downregulated in NAFLD patients. Similarly, in the NAFLD mouse model, mice fed with a high-fat diet showed reduced hepatic GLP-1R expression, which was reversed by NaB treatment and accompanied by markedly alleviated liver steatosis. In addition, NaB treatment also upregulated the hepatic p-AMPK/p-ACC and insulin receptor/insulin receptor substrate-1 expression levels. Furthermore, NaB-enhanced GLP-1R expression in HepG2 cells by inhibiting histone deacetylase-2 independent of GPR43/GPR109a. These results indicate that NaB is able to prevent the progression of NAFL to NASH via promoting hepatic GLP-1R expression. NaB is a GLP-1 sensitizer and represents a potential therapeutic adjuvant to prevent NAFL progression to NASH.


Subject(s)
Butyric Acid/therapeutic use , Glucagon-Like Peptide-1 Receptor/metabolism , Intestines/physiology , Liver/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Adult , Animals , Diet, High-Fat , Disease Models, Animal , Disease Progression , Down-Regulation , Female , Glucagon-Like Peptide 1/metabolism , Hep G2 Cells , Humans , Liver/pathology , Male , Mice , Mice, Inbred C57BL
12.
World J Gastroenterol ; 23(1): 60-75, 2017 Jan 07.
Article in English | MEDLINE | ID: mdl-28104981

ABSTRACT

AIM: To investigate whether gut microbiota metabolite sodium butyrate (NaB) is an effective substance for attenuating non-alcoholic fatty liver disease (NAFLD) and the internal mechanisms. METHODS: Male C57BL/6J mice were divided into three groups, normal control were fed standard chow and model group were fed a high-fat diet (HFD) for 16 wk, the intervention group were fed HFD for 16 wk and treated with NaB for 8 wk. Gut microbiota from each group were detected at baseline and at 16 wk, liver histology were evaluated and gastrointestinal barrier indicator such as zonula occluden-1 (ZO-1) were detected by immunohistochemistry and realtime-PCR, further serum or liver endotoxin were determined by ELISA and inflammation- or metabolism-associated genes were quantified by real-time PCR. RESULTS: NaB corrected the HFD-induced gut microbiota imbalance in mice, while it considerably elevated the abundances of the beneficial bacteria Christensenellaceae, Blautia and Lactobacillus. These bacteria can produce butyric acid in what seems like a virtuous circle. And butyrate restored HFD induced intestinal mucosa damage, increased the expression of ZO-1 in small intestine, further decreased the levels of gut endotoxin in serum and liver compared with HF group. Endotoxin-associated genes such as TLR4 and Myd88, pro-inflammation genes such as MCP-1, TNF-α, IL-1, IL-2, IL-6 and IFN-γ in liver or epididymal fat were obviously downregulated after NaB intervention. Liver inflammation and fat accumulation were ameliorated, the levels of TG and cholesterol in liver were decreased after NaB intervention, NAS score was significantly decreased, metabolic indices such as FBG and HOMA-IR and liver function indicators ALT and AST were improved compared with HF group. CONCLUSION: NaB may restore the dysbiosis of gut microbiota to attenuate steatohepatitis, which is suggested to be a potential gut microbiota modulator and therapeutic substance for NAFLD.


Subject(s)
Butyric Acid/therapeutic use , Cytokines/metabolism , Gastrointestinal Microbiome/drug effects , Liver/metabolism , Non-alcoholic Fatty Liver Disease/therapy , Zonula Occludens-1 Protein/metabolism , Animals , Butyric Acid/pharmacology , Diet, High-Fat/adverse effects , Drug Evaluation, Preclinical , Dysbiosis/drug therapy , Humans , Immunohistochemistry , Inflammation/drug therapy , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Lactobacillus/drug effects , Lactobacillus/metabolism , Liver/drug effects , Liver Function Tests , Male , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/etiology , Real-Time Polymerase Chain Reaction , Specific Pathogen-Free Organisms , Tumor Necrosis Factor-alpha
13.
World J Gastroenterol ; 23(46): 8140-8151, 2017 Dec 14.
Article in English | MEDLINE | ID: mdl-29290651

ABSTRACT

AIM: To evaluate the levels of miR-192-5p in non-alcoholic fatty liver disease (NAFLD) models and demonstrate the role of miR-192-5p in lipid accumulation. METHODS: Thirty Sprague Dawley rats were randomly divided into three groups, which were given a standard diet, a high-fat diet (HFD), and an HFD with injection of liraglutide. At the end of 16 weeks, hepatic miR-192-5p and stearoyl-CoA desaturase 1 (SCD-1) levels were measured. MiR-192-5p mimic and inhibitor and SCD-1 siRNA were transfected into Huh7 cells exposed to palmitic acid (PA). Lipid accumulation was evaluated by oil red O staining and triglyceride assays. Direct interaction was validated by dual-luciferase reporter gene assays. RESULTS: The HFD rats showed a 0.46-fold decrease and a 3.5-fold increase in hepatic miR-192-5p and SCD-1 protein levels compared with controls, respectively, which could be reversed after disease remission by liraglutide injection (P < 0.01). The Huh7 cells exposed to PA also showed down-regulation and up-regulation of miR-192-5p and SCD-1 protein levels, respectively (P < 0.01). Transfection with miR-192-5p mimic and inhibitor in Huh7 cells induced dramatic repression and promotion of SCD-1 protein levels, respectively (P < 0.01). Luciferase activity was suppressed and enhanced by miR-192-5p mimic and inhibitor, respectively, in wild-type SCD-1 (P < 0.01) but not in mutant SCD-1. MiR-192-5p overexpression reduced lipid accumulation significantly in PA-treated Huh7 cells, and SCD-1 siRNA transfection abrogated the lipid deposition aggravated by miR-192-5p inhibitor (P < 0.01). CONCLUSION: This study demonstrates that miR-192-5p has a negative regulatory role in lipid synthesis, which is mediated through its direct regulation of SCD-1.


Subject(s)
Lipogenesis/genetics , Liver/pathology , MicroRNAs/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Stearoyl-CoA Desaturase/genetics , Animals , Cell Line, Tumor , Diet, High-Fat/adverse effects , Disease Models, Animal , Down-Regulation , Gene Knockdown Techniques , Humans , Lipogenesis/drug effects , Liraglutide/therapeutic use , Male , MicroRNAs/genetics , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/genetics , Palmitic Acid/pharmacology , RNA, Small Interfering/metabolism , Rats , Rats, Sprague-Dawley , Stearoyl-CoA Desaturase/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...