Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 160
Filter
1.
Cell Death Dis ; 15(5): 355, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38777825

ABSTRACT

As a typical E3 ligase, TRIM65 (tripartite motif containing 65) is involved in the regulation of antiviral innate immunity and the pathogenesis of certain tumors. However, the role of TRIM65 in renal cell carcinoma (RCC) and the underlying mechanism has not been determined yet. In this study, we identified TRIM65 as a novel oncogene in RCC, which enhanced the tumor cell proliferation and anchorage-independent growth abilities both in vitro and in vivo. Moreover, we found that TRIM65-regulated RCC proliferation mainly via direct interaction with BTG3 (BTG anti-proliferation factor 3), which in turn induced the K48-linked ubiquitination and subsequent degradation through K41 amino acid. Furthermore, TRIM65 relieved G2/M phase cell cycle arrest via degradation of BTG3 and regulated downstream factors. Further studies revealed that TRIM65 acts through TRIM65-BTG3-CyclinD1 axis and clinical sample IHC chip data indicated a negative correction between TRIM65 and BTG3. Taken together, our findings demonstrated that TRIM65 promotes RCC cell proliferation via regulation of the cell cycle through degradation of BTG3, suggesting that TRIM65 may be a promising target for RCC therapy.


Subject(s)
Carcinoma, Renal Cell , Cell Proliferation , Kidney Neoplasms , Proteolysis , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Ubiquitination , Humans , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Kidney Neoplasms/genetics , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Cell Line, Tumor , Animals , Mice, Nude , Mice , Mice, Inbred BALB C , HEK293 Cells , Gene Expression Regulation, Neoplastic , Cell Cycle Proteins
2.
Anal Bioanal Chem ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38739158

ABSTRACT

Nanozymes are nanomaterials with mimetic enzyme properties and the related research has attracted much attention. It is of great value to develop methods to construct nanozymes and to study their application in bioanalysis. Herein, the metal-ligand cross-linking strategy was developed to fabricate superstructure nanozymes. This strategy takes advantage of being easy to operate, adjustable, cheap, and universal. The fabricated superstructure nanozymes possess efficient peroxidase-like catalytic activity. The enzyme reaction kinetic tests demonstrated that for TMB and H2O2, the Km is 0.229 and 1.308 mM, respectively. Furthermore, these superstructure nanozymes are applied to highly efficient and sensitive detection of glucose. The linear range for detecting glucose is 20-2000 µM, and the limit of detection is 17.5 µM. Furthermore, mechanistic research illustrated that this integrated system oxidizes glucose to produce hydrogen peroxide and further catalyzes the production of ·OH and O2·-, which results in a chromogenic reaction of oxidized TMB for the detection of glucose. This work could not only contribute to the development of efficient nanozymes but also inspire research in the highly sensitive detection of other biomarkers.

3.
Invest Ophthalmol Vis Sci ; 65(5): 36, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38776115

ABSTRACT

Purpose: The purpose of this study was to investigate the protective effect of CD38 deletion on retinal ganglion cells (RGCs) in a mouse retinal ischemia/reperfusion (I/R) model and an optic nerve crush (ONC) model, and to elucidate the underlying molecular mechanisms. Methods: Retinal I/R and ONC models were constructed in mice. PCR was used to identify the deletion of CD38 gene in mice, hematoxylin and eosin (H&E) staining was used to evaluate the changes in retinal morphology, and electroretinogram (ERG) was used to evaluate the changes in retinal function. The survival of RGCs and activation of retinal macroglia were evaluated by immunofluorescence staining. The expression of Sirt1, CD38, Ac-p65, Ac-p53, TNF-α, IL-1ß, and Caspase3 proteins in the retina was further evaluated by protein imprinting. Results: In retinal I/R and ONC models, CD38 deficiency reduced the loss of RGCs and activation of macroglia and protected the retinal function. CD38 deficiency increased the concentration of NAD+, reduced the degree of acetylation of NF-κB p65 and p53, and reduced expression of the downstream inflammatory cytokines TNFα, IL-1ß, and apoptotic protein Caspase3 in the retina in the ONC model. Intraperitoneal injection of the Sirt1 inhibitor EX-527 partially counteracted the effects of CD38 deficiency, suggesting that CD38 deficiency acts at least in part through the NAD+/Sirt1 pathway. Conclusions: CD38 plays an important role in the pathogenesis of retinal I/R and ONC injury. CD38 deletion protects RGCs by attenuating inflammatory responses and apoptosis through the NAD+/Sirt1 pathway.


Subject(s)
ADP-ribosyl Cyclase 1 , Disease Models, Animal , Mice, Inbred C57BL , NAD , Optic Nerve Injuries , Reperfusion Injury , Retinal Ganglion Cells , Sirtuin 1 , Animals , Sirtuin 1/metabolism , Sirtuin 1/genetics , Retinal Ganglion Cells/pathology , Retinal Ganglion Cells/metabolism , ADP-ribosyl Cyclase 1/metabolism , ADP-ribosyl Cyclase 1/genetics , Reperfusion Injury/metabolism , Reperfusion Injury/prevention & control , Mice , NAD/metabolism , Optic Nerve Injuries/metabolism , Electroretinography , Nerve Crush , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Male , Signal Transduction/physiology
4.
Biomater Adv ; 160: 213851, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38642517

ABSTRACT

Burns are a significant public health issue worldwide, resulting in prolonged hospitalization, disfigurement, disability and, in severe cases, death. Among them, deep second-degree burns are often accompanied by bacterial infections, insufficient blood flow, excessive skin fibroblasts proliferation and collagen deposition, all of which contribute to poor wound healing and scarring following recovery. In this study, SNP/MCNs-SKN-chitosan-ß-glycerophosphate hydrogel (MSSH), a hydrogel composed of a temperature-sensitive chitosan-ß-glycerophosphate hydrogel matrix (CGH), mesoporous carbon nanospheres (MCNs), nitric oxide (NO) donor sodium nitroprusside (SNP) and anti-scarring substance shikonin (SKN), is intended for use as a biomedical material. In vitro tests have revealed that MSSH has broad-spectrum antibacterial abilities and releases NO in response to near-infrared (NIR) laser to promote angiogenesis. Notably, MSSH can inhibit excessive proliferation of fibroblasts and effectively reduce scarring caused by deep second-degree burns, as demonstrated by in vitro and in vivo tests.


Subject(s)
Burns , Cicatrix , Hydrogels , Naphthoquinones , Wound Healing , Burns/drug therapy , Burns/pathology , Wound Healing/drug effects , Animals , Hydrogels/chemistry , Hydrogels/pharmacology , Cicatrix/prevention & control , Cicatrix/pathology , Naphthoquinones/pharmacology , Naphthoquinones/therapeutic use , Naphthoquinones/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Fibroblasts/drug effects , Chitosan/pharmacology , Chitosan/chemistry , Temperature , Mice , Humans , Nitric Oxide/metabolism , Nitroprusside/pharmacology , Cell Proliferation/drug effects
5.
Int J Mol Sci ; 25(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38673941

ABSTRACT

Abdominal aortic aneurysm (AAA) is a serious vascular disease which is associated with vascular remodeling. CD38 is a main NAD+-consuming enzyme in mammals, and our previous results showed that CD38 plays the important roles in many cardiovascular diseases. However, the role of CD38 in AAA has not been explored. Here, we report that smooth-muscle-cell-specific deletion of CD38 (CD38SKO) significantly reduced the morbidity of AngII-induced AAA in CD38SKOApoe-/- mice, which was accompanied with a increases in the aortic diameter, medial thickness, collagen deposition, and elastin degradation of aortas. In addition, CD38SKO significantly suppressed the AngII-induced decreases in α-SMA, SM22α, and MYH11 expression; the increase in Vimentin expression in VSMCs; and the increase in VCAM-1 expression in smooth muscle cells and macrophage infiltration. Furthermore, we demonstrated that the role of CD38SKO in attenuating AAA was associated with the activation of sirtuin signaling pathways. Therefore, we concluded that CD38 plays a pivotal role in AngII-induced AAA through promoting vascular remodeling, suggesting that CD38 may serve as a potential therapeutic target for the prevention of AAA.


Subject(s)
ADP-ribosyl Cyclase 1 , Angiotensin II , Aortic Aneurysm, Abdominal , Mice, Knockout , Myocytes, Smooth Muscle , Vascular Remodeling , Animals , Male , Mice , ADP-ribosyl Cyclase 1/metabolism , ADP-ribosyl Cyclase 1/genetics , Aortic Aneurysm, Abdominal/chemically induced , Aortic Aneurysm, Abdominal/genetics , Aortic Aneurysm, Abdominal/pathology , Disease Models, Animal , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Mice, Inbred C57BL , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Myosin Heavy Chains/metabolism , Myosin Heavy Chains/genetics , Signal Transduction , Vascular Remodeling/genetics
6.
Transgenic Res ; 33(1-2): 35-46, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38461212

ABSTRACT

Chronic hepatitis B virus (HBV) poses a significant global health challenge as it can lead to acute or chronic liver disease and hepatocellular carcinoma (HCC). To establish a safety experimental model, a homolog of HBV-duck HBV (DHBV) is often used for HBV research. Hydrodynamic-based gene delivery (HGD) is an efficient method to introduce exogenous genes into the liver, making it suitable for basic research. In this study, a duck HGD system was first constructed by injecting the reporter plasmid pLIVE-SEAP via the ankle vein. The highest expression of SEAP occurred when ducks were injected with 5 µg/mL plasmid pLIVE-SEAP in 10% bodyweight volume of physiological saline for 6 s. To verify the distribution and expression of exogenous genes in multiple tissues, the relative level of foreign gene DNA and ß-galactosidase staining of LacZ were evaluated, which showed the plasmids and their products were located mainly in the liver. Additionally, ß-galactosidase staining and fluorescence imaging indicated the delivered exogenous genes could be expressed in a short time. Further, the application of the duck HGD model on DHBV treatment was investigated by transferring representative anti-HBV genes IFNα and IFNγ into DHBV-infected ducks. Delivery of plasmids expressing IFNα and IFNγ inhibited DHBV infection and we established a novel efficient HGD method in ducks, which could be useful for drug screening of new genes, mRNAs and proteins for anti-HBV treatment.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis B Virus, Duck , Hepatitis B, Chronic , Liver Neoplasms , Animals , Humans , Carcinoma, Hepatocellular/pathology , Ducks/genetics , Hepatitis B, Chronic/pathology , Liver Neoplasms/pathology , Hydrodynamics , Liver , Hepatitis B Virus, Duck/genetics , beta-Galactosidase , DNA, Viral/genetics
7.
Int Immunopharmacol ; 129: 111660, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38350357

ABSTRACT

BACKGROUND: Human amniotic mesenchymal stem cells (hAMSCs) derived from amniotic membrane have multilineage differentiation, immunosuppressive, and anti-inflammation which makes them suitable for the treatment of various diseases. OBJECTIVE: This study aimed to explore the therapeutic effect and molecular mechanism of hAMSCs in ventricular remodeling (VR). METHODS: hAMSCs were characterized by a series of experiments such as flow cytometric analysis, immunofluorescence, differentiative induction and tumorigenicity. Mouse VR model was induced by isoproterenol (ISO) peritoneally, and the therapeutic effects and the potential mechanisms of hAMSCs transplantation were evaluated by echocardiography, carboxy fluorescein diacetate succinimidyl ester (CFSE) labeled cell tracing, histochemistry, qRT-PCR and western blot analysis. The co-culturing experiments were carried out for further exploring the mechanisms of hAMSCs-derived conditioned medium (CM) on macrophage polarization and fibroblast fibrosis in vitro. RESULTS: hAMSCs transplantation significantly alleviated ISO-induced VR including cardiac hypertrophy and fibrosis with the improvements of cardiac functions. CFSE labeled hAMSCs kept an undifferentiated state in heart, indicating that hAMSCs-mediated the improvement of ISO-induced VR might be related to their paracrine effects. hAMSCs markedly inhibited ISO-induced inflammation and fibrosis, seen as the increase of M2 macrophage infiltration and the expressions of CD206 and IL-10, and the decreases of CD86, iNOS, COL3 and αSMA expressions in heart, suggesting that hAMSCs transplantation promoted the polarization of M2 macrophages and inhibited the polarization of M1 macrophages. Mechanically, hAMSCs-derived CM significantly increased the expressions of CD206, IL-10, Arg-1 and reduced the expressions of iNOS and IL-6 in RAW264.7 macrophages in vitro. Interestingly, RAW264.7-CM remarkably promoted the expressions of anti-inflammatory factors such as IL-10, IDO, and COX2 in hAMSCs. Furthermore, the CM derived from hAMSCs pretreated with RAW264.7-CM markedly inhibited the expressions of fibrogenesis genes such as αSMA and COL3 in 3T3 cells. CONCLUSION: Our results demonstrated that hAMSCs effectively alleviated ISO-induced cardiac hypertrophy and fibrosis, and improved the cardiac functions in mice, and the underlying mechanisms might be related to inhibiting the inflammation and fibrosis during the ventricular remodeling through promoting the polarization of CD206hiIL-10hi macrophages in heart tissues. Our study strongly suggested that by taking the advantages of the potent immunosuppressive and anti-inflammatory effects, hAMSCs may provide an alternative therapeutic approach for prevention and treatment of VR clinically.


Subject(s)
Fluoresceins , Interleukin-10 , Mesenchymal Stem Cells , Succinimides , Mice , Humans , Animals , Interleukin-10/pharmacology , Amnion , Isoproterenol , Ventricular Remodeling , Macrophages , Inflammation/chemically induced , Inflammation/therapy , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Fibrosis , Cardiomegaly
8.
Cell Mol Gastroenterol Hepatol ; 17(6): 965-981, 2024.
Article in English | MEDLINE | ID: mdl-38342302

ABSTRACT

BACKGROUND & AIMS: Hepatic ischemia-reperfusion injury (HIRI) often occurs in liver surgery, such as partial hepatectomy and liver transplantation, in which myeloid macrophage-mediated inflammation plays a critical role. Cell division cycle 42 (Cdc42) regulates cell migration, cytoskeleton rearrangement, and cell polarity. In this study, we explore the role of myeloid Cdc42 in HIRI. METHODS: Mouse HIRI models were established with 1-hour ischemia followed by 12-hour reperfusion in myeloid Cdc42 knockout (Cdc42mye) and Cdc42flox mice. Myeloid-derived macrophages were traced with RosamTmG fluorescent reporter under LyzCre-mediated excision. The experiments for serum or hepatic enzymic activities, histologic and immunologic analysis, gene expressions, flow cytometry analysis, and cytokine antibody array were performed. RESULTS: Myeloid deletion of Cdc42 significantly alleviated hepatic damages with the reduction of hepatic necrosis and inflammation, and reserved hepatic functions following HIRI in mice. Myeloid Cdc42 deficiency suppressed the infiltration of myeloid macrophages, reduced the secretion of proinflammatory cytokines, restrained M1 polarization, and promoted M2 polarization of myeloid macrophages in livers. In addition, inactivation of Cdc42 promoted M2 polarization via suppressing the phosphorylation of STAT1 and promoting phosphorylation of STAT3 and STAT6 in myeloid macrophages. Furthermore, pretreatment with Cdc42 inhibitor, ML141, also protected mice from hepatic ischemia-reperfusion injury. CONCLUSIONS: Inhibition or deletion of myeloid Cdc42 protects liver from HIRI via restraining the infiltration of myeloid macrophages, suppressing proinflammatory response, and promoting M2 polarization in macrophages.


Subject(s)
Disease Models, Animal , Inflammation , Liver , Macrophages , Mice, Knockout , Reperfusion Injury , cdc42 GTP-Binding Protein , Animals , Reperfusion Injury/pathology , Reperfusion Injury/immunology , Reperfusion Injury/metabolism , Reperfusion Injury/genetics , Reperfusion Injury/prevention & control , cdc42 GTP-Binding Protein/metabolism , cdc42 GTP-Binding Protein/genetics , Mice , Macrophages/metabolism , Macrophages/immunology , Liver/pathology , Liver/metabolism , Liver/immunology , Inflammation/pathology , Inflammation/metabolism , Myeloid Cells/metabolism , Myeloid Cells/pathology , STAT3 Transcription Factor/metabolism , Male , STAT1 Transcription Factor/metabolism , Cytokines/metabolism , STAT6 Transcription Factor/metabolism , STAT6 Transcription Factor/genetics , STAT6 Transcription Factor/deficiency , Mice, Inbred C57BL , Gene Deletion
9.
Adv Healthc Mater ; 13(8): e2303095, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38175177

ABSTRACT

Androgenetic alopecia (AGA) is a prevalent systemic disease caused by diverse factors, for which effective treatments are currently limited. Herein, the oleogel (OG) containing copper-curcumin (CuR) nanoparticles is developed, designated as CuRG, which is also combined with traditional naturopathic scraping (Gua Sha, SCR) as a multifunctional therapy for AGA. With the assistance of lipophilic OG and SCR, CuR can efficaciously penetrate the epidermal and dermal regions where most hair follicles (HFs) reside, thereby releasing curcumin (CR) and copper ions (Cu2+) subcutaneously to facilitate hair regeneration. Concomitantly, the mechanical stimulation induced by SCR promotes the formation of new blood vessels, which is conducive to reshaping the microenvironment of HFs. This study validates that the combination of CuRG and SCR is capable of systematically interfering with different pathological processes, ranging from improvement of perifollicular microenvironment (oxidative stress and insufficient vascularization), regulation of inflammatory responses to degradation of androgen receptor, thus potentiating hair growth. Compared with minoxidil, a widely used clinical drug for AGA therapy, the designed synergistic system displays augmented hair regeneration in the AGA mouse model.


Subject(s)
Copper , Curcumin , Animals , Mice , Copper/pharmacology , Curcumin/pharmacology , Alopecia/drug therapy , Alopecia/metabolism , Alopecia/pathology , Hair/metabolism , Organic Chemicals
10.
Int J Mol Sci ; 24(21)2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37958991

ABSTRACT

Diabetic cardiomyopathy is one of the diabetes mellitus-induced cardiovascular complications that can result in heart failure in severe cases, which is characterized by cardiomyocyte apoptosis, local inflammation, oxidative stress, and myocardial fibrosis. CD38, a main hydrolase of NAD+ in mammals, plays an important role in various cardiovascular diseases, according to our previous studies. However, the role of CD38 in diabetes-induced cardiomyopathy is still unknown. Here, we report that global deletion of the CD38 gene significantly prevented diabetic cardiomyopathy induced by high-fat diet plus streptozotocin (STZ) injection in CD38 knockout (CD38-KO) mice. We observed that CD38 expression was up-regulated, whereas the expression of Sirt3 was down-regulated in the hearts of diabetic mice. CD38 deficiency significantly promoted glucose metabolism and improved cardiac functions, exemplified by increased left ventricular ejection fraction and fractional shortening. In addition, we observed that CD38 deficiency markedly decreased diabetes or high glucose and palmitic acid (HG + PA)-induced pyroptosis and apoptosis in CD38 knockout hearts or cardiomyocytes, respectively. Furthermore, we found that the expression levels of Sirt3, mainly located in mitochondria, and its target gene FOXO3a were increased in CD38-deficient hearts and cardiomyocytes with CD38 knockdown under diabetic induction conditions. In conclusion, we demonstrated that CD38 deficiency protected mice from diabetes-induced diabetic cardiomyopathy by reducing pyroptosis and apoptosis via activating NAD+/Sirt3/FOXO3a signaling pathways.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Sirtuin 3 , Animals , Mice , Apoptosis , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/metabolism , Mammals/metabolism , Myocytes, Cardiac/metabolism , NAD/metabolism , Oxidative Stress , Pyroptosis , Sirtuin 3/metabolism , Stroke Volume , Ventricular Function, Left
11.
ACS Appl Bio Mater ; 6(11): 4988-4997, 2023 11 20.
Article in English | MEDLINE | ID: mdl-37862245

ABSTRACT

The vascular endothelium serves as a physical barrier between the circulating blood and surrounding tissue and acts as a critical regulator of various physiological processes. In vitro models involving vasculature rely on the maintenance of the endothelial barrier function. In this study, we fabricated 2D aligned nanofibrous membranes with distinct pore sizes via electrospinning and investigated the effect of membrane pore size on endothelial barrier function. Our results demonstrated that the use of the nanofibrous membranes promoted the formation of a tight vascular endothelium and sustained barrier function for over one month in comparison with conventional transwell setups. Moreover, the examination of the nucleocytoplasmic localization of yes-associated protein (YAP) in the endothelial cells indicated that nanofibrous membrane promoted YAP expression and its nuclear localization, critical to endothelial barrier function. Furthermore, the comparison of permeability between random and aligned nanofibrous membranes underscored the importance of pore size in preserving barrier function. Our findings offer a valuable strategy for creating more physiologically relevant in vitro vascular models and contribute to the understanding of endothelial barrier formation and maintenance mechanisms.


Subject(s)
Endothelial Cells , Nanofibers , Membrane Proteins
12.
Int Immunopharmacol ; 124(Pt B): 110875, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37742368

ABSTRACT

BACKGROUND: Extensions of mesenchymal stem cells (MSCs) in vitro may lead to the loss of their biological functions. However, hypoxic culturation has been shown to enhance the proliferation, survival, and immunomodulatory capacity of MSCs. OBJECTIVE: We aimed to investigate the effects of long-term hypoxic cultivation on the properties of human umbilical cord-derived MSCs (hUCMSCs) and the therapeutic effects of their extracellular vesicles (EVs) in allergic rhinitis (AR). METHODS: Proliferation, senescence, telomerase activity and multipotent properties of hUCMSCs were analyzed under long-term culturation of hypoxia (1%) or normoxia (21%), and the therapeutic effects of their conditional medium (CM) and EVs were evaluated in OVA-induced AR mice. Effects of hypoxia-EVs (Hy-EVs) or normoxia-EVs (No-EVs) on human monocyte-derived dendritic cells (DCs) were investigated, and the possible mechanisms of Hy-EVs in induction of immunotolerance were further explored. RESULTS: Long-term hypoxia significantly promoted the proliferation, inhibited cell senescence, maintained the multipotent status of hUCMSCs. Hy-CM and Hy-EVs showed better therapeutic effects in AR mice compared to No-EVs, seen as improvement of AR-related behaviors such as rubbing and sneezing, and attenuation of inflammation in nasal tissues. In addition, Hy-EVs significantly reduced the expressions of HLA-DR, CD80, CD40, and CD83 induced by OVA plus LPS in DCs, inhibiting the maturation of DCs. Furthermore, we observed that VEGF was remarkably enriched in Hy-EVs, but not in No-EVs, and the inhibition of DCs maturation was markedly neutralized by VEGF antibodies, suggesting that VEGF derived from Hy-EVs was responsible for the inhibition of DCs maturation. CONCLUSION: Our results demonstrated that long-term hypoxia significantly promoted the proliferation, inhibited cell senescence, maintained the multipotent status of hUCMSCs, and hypoxia treated hUCMSCs-derived EVs enhanced their therapeutic effects in AR mice through VEGF-mediated inhibition of DCs maturation.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , Rhinitis, Allergic , Humans , Mice , Animals , Vascular Endothelial Growth Factor A/metabolism , Mesenchymal Stem Cells/metabolism , Rhinitis, Allergic/therapy , Rhinitis, Allergic/metabolism , Hypoxia/therapy , Hypoxia/metabolism , Dendritic Cells/metabolism , Extracellular Vesicles/metabolism
13.
Medicine (Baltimore) ; 102(39): e35348, 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37773863

ABSTRACT

The combination of mRNA and lncRNA profiles for establishing an integrated mRNA-lncRNA prognostic signature has remained unexplored in cholangiocarcinoma (CCA) patients. We utilized a training dataset of 36 samples from The Cancer Genome Atlas dataset and a validation cohort (GSE107943) of 30 samples from Gene Expression Omnibus. Two mRNAs (CFHR3 and PIWIL4) and 2 lncRNAs (AC007285.1 and AC134682.1) were identified to construct the integrated signature through a univariate Cox regression (P-value = 1.35E-02) and a multivariable Cox analysis (P-value = 3.07E-02). Kaplan-Meier curve showed that patients with low risk scores had notably prolonged overall survival than those with high risk scores (P-value = 4.61E-03). Subsequently, the signature was validated in GSE107943 cohort with an area under the curve of 0.750 at 1-year and 0.729 at 3-year. The signature was not only independent from diverse clinical features (P-value = 3.07E-02), but also surpassed other clinical characteristics as prognostic biomarkers with area under the curve of 0.781 at 3-year. Moreover, the weighted gene co-expression network analysis and gene enrichment analyses found that the integrated signature were associated with metabolic-related biological process and lipid metabolism pathway, which has been implicated in the pathogenesis of CCA. Taken together, we developed an integrated mRNA-lncRNA signature that had an independent prognostic value in the risk stratification of patients with CCA.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Cholangiocarcinoma/genetics , Bile Duct Neoplasms/genetics , Bile Ducts, Intrahepatic
14.
J Cardiovasc Pharmacol ; 82(2): 93-103, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37314134

ABSTRACT

ABSTRACT: Ubiquitin E3 ligases are a structurally conserved family of enzymes that exert a variety of regulatory functions in immunity, cell death, and tumorigenesis through the ubiquitination of target proteins. Emerging evidence has shown that E3 ubiquitin ligases play crucial roles in the pathogenesis of endothelial dysfunction and related vascular diseases. Here, we reviewed the new findings of E3 ubiquitin ligases in regulating endothelial dysfunction, including endothelial junctions and vascular integrity, endothelial activation, and endothelial apoptosis. The critical role and potential mechanism of E3 ubiquitin ligases in vascular diseases, such as atherosclerosis, diabetes, hypertension, pulmonary hypertension, and acute lung injury, were summarized. Finally, the clinical significance and potential therapeutic strategies associated with the regulation of E3 ubiquitin ligases were also proposed.


Subject(s)
Ubiquitin-Protein Ligases , Vascular Diseases , Humans , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Ubiquitin/metabolism , Proteins , Vascular Diseases/drug therapy
15.
Biochem Cell Biol ; 101(4): 303-312, 2023 08 01.
Article in English | MEDLINE | ID: mdl-36927169

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an emerging pathogenic coronavirus, has been reported to cause excessive inflammation and dysfunction in multiple cells and organs, but the underlying mechanisms remain largely unknown. Here we showed exogenous addition of SARS-CoV-2 envelop protein (E protein) potently induced cell death in cultured cell lines, including THP-1 monocytic leukemia cells, endothelial cells, and bronchial epithelial cells, in a time- and concentration-dependent manner. SARS-CoV-2 E protein caused pyroptosis-like cell death in THP-1 and led to GSDMD cleavage. In addition, SARS-CoV-2 E protein upregulated the expression of multiple pro-inflammatory cytokines that may be attributed to activation of NF-κB, JNK and p38 signal pathways. Notably, we identified a natural compound, Ruscogenin, effectively reversed E protein-induced THP-1 death via inhibition of NLRP3 activation and GSDMD cleavage. In conclusion, these findings suggested that Ruscogenin may have beneficial effects on preventing SARS-CoV-2 E protein-induced cell death and might be a promising treatment for the complications of COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Endothelial Cells , Pyroptosis/physiology
16.
Eur J Pharmacol ; 946: 175666, 2023 May 05.
Article in English | MEDLINE | ID: mdl-36944380

ABSTRACT

Endotoxemia is a disease characterized by systemic inflammatory responses and organ injury caused by lipopolysaccharide (LPS) infection, with high mortality. Nicaraven (AVS), a potent hydroxyl radical scavenger, has been proven to regulate the inflammatory response in tumors. To investigate the protective effects and mechanisms of AVS in endotoxemia, mice were injected intraperitoneally with LPS to induce endotoxemia. AVS treatment significantly decreased the levels of pro-inflammatory cytokines in the serum, reduced neutrophil infiltration, attenuated multiple organ injury, and increased the survival rate in LPS-challenged mice. In the LPS-induced inflammatory model of macrophages, AVS inhibited macrophage activation, suppressed nitric oxide (NO) production, and inhibited the expression and secretion of pro-inflammatory cytokines. Mechanistically, AVS treatment up-regulated silence information regulator transcript-1 (Sirt1) expression in a time- and dose-dependent manner. AVS treatment activated the AMP-dependent protein kinase (AMPK)/Sirt1 signaling pathway and suppressed the activation of nuclear factor kappa B (NF-κB) in macrophages exposed to LPS. However, the anti-inflammatory effects of AVS could be reversed by the AMPK, the Sirt1 inhibitor, or the histone deacetylase inhibitor. We confirmed that the AMPK inhibitor inhibited AVS-mediated AMPK/Sirt1 activation and NF-κB p65 acetylation. These results suggested that AVS alleviated endotoxemia by activating the AMPK/Sirt1 signaling pathway in macrophages.


Subject(s)
Endotoxemia , NF-kappa B , Animals , Mice , NF-kappa B/metabolism , AMP-Activated Protein Kinases/metabolism , Sirtuin 1/metabolism , Endotoxemia/chemically induced , Endotoxemia/complications , Endotoxemia/metabolism , Lipopolysaccharides/metabolism , Signal Transduction , Macrophages , Inflammation/drug therapy , Inflammation/prevention & control , Inflammation/chemically induced , Cytokines/metabolism
17.
Biosens Bioelectron ; 221: 114902, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36436466

ABSTRACT

Bacterial antimicrobial resistance (AMR) driven by the abuse of antibiotics is a global highlight challenge, calling for a rapid, economical and generalizable bacterial detection technology. Here, in case of urinary tract infections (UTIs), a naked-eye, antibody-free and multi-functional bacterial assessment platform was designed, which consisted of concanavalin A modified gold nanoparticles (ConA-AuNPs), vancomycin modified gold nanoparticles (Van-AuNPs), and polymyxin B modified Prussian blue nanoparticles (PMB-PBNPs). Based on the fast agglutination of bacterial cells induced by concanavalin A, ConA-AuNPs could aggregate on bacterial cells of Escherichia coli and Staphylococcus aureus, resulting in a visible color change due to alteration of surface plasmon resonance properties within 30 min. Besides, due to the different affinity of vancomycin and polymyxin B to bacteria, Van-AuNPs preferred to bind to Gram-positive bacteria, generating colorimetric response within 2-3 h; while PMB-PBNPs could be reduced colourless Prussian white (PW) by the prior Gram-negative bacterial metabolization in contrast to Gram-positive bacterial metabolization within 4-6 h. Combining our platform with antibiotics, the minimum inhibitory concentration of bacteria could be determined within 4-8 h, which was proved by incubating Escherichia coli and Staphylococcus aureus with various antibiotics. The feasibility was verified by clinical samples, which was consistent with the classical clinical test within only 1/48 of the process timing. Therefore, this colorimetric nanoplatform orderly realized the rapid detection, species identification (Gram-positive and Gram-negative), and susceptibility evaluation of bacteria, satisfying multiple needs from timely clinical diagnosis to accurate medication guidance.


Subject(s)
Biosensing Techniques , Escherichia coli Infections , Metal Nanoparticles , Staphylococcal Infections , Humans , Vancomycin , Concanavalin A , Polymyxin B , Gold , Bacteria , Anti-Bacterial Agents/pharmacology , Staphylococcus aureus , Staphylococcal Infections/diagnosis , Staphylococcal Infections/drug therapy , Escherichia coli Infections/diagnosis , Escherichia coli Infections/drug therapy , Escherichia coli
18.
Biol Pharm Bull ; 46(1): 52-60, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36288961

ABSTRACT

Vitamin K, a necessary nutritional supplement for human, has been found to exhibit anti-inflammatory activity. In the present study, we investigated the effects of vitamin K family on lipopolysaccharide (LPS) plus nigericin induced pyroptosis and explored the underlying mechanism of its action in THP-1 monocytes. Results showed that vitamin K3 treatment significantly suppressed THP-1 pyroptosis, but not vitamin K1 or K2, as evidenced by increased cell viability, reduced cellular lactate dehydrogenase (LDH) release and improved cell morphology. Vitamin K3 inhibited NLRP3 expression, caspase-1 activation, GSDMD cleavage and interleukin (IL)-1ß secretion in pyrophoric THP-1 cells. In addition, vitamin K3 inhibited the pro-inflammatory signaling pathways including nuclear factor-κB (NF-κB) and c-Jun N-terminal kinase (JNK). Vitamin K3 treatment also attenuated tissue damage and reduced serum LDH, IL-1ß and IL-6 levels in LPS-induced systemic inflammation of mice. The reduced myeloperoxidase (MPO) activityand F4/80 expression indicated that vitamin K3 effectively reduced the infiltration of neutrophils and macrophages. Moreover, NLRP3 expression in monocytes/macrophages were also decreased in vitamin K3-treatedmice after LPS challenge. These findings suggest that vitamin K3 potently alleviates systemic inflammation and organ injury via inhibition of pyroptosis in monocytes and may serve as a novel therapeutic strategy for patients with inflammatory diseases.


Subject(s)
MAP Kinase Signaling System , NF-kappa B , Humans , Mice , Animals , NF-kappa B/metabolism , Vitamin K 3/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis , THP-1 Cells , Lipopolysaccharides/pharmacology , Inflammation
19.
ACS Biomater Sci Eng ; 9(1): 363-374, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36564012

ABSTRACT

The large amount of reactive oxygen species (ROS) produced by high glucose metabolism in diabetic patients not only induces inflammation but also damages blood vessels, finally resulting in low limb temperature, and the high glucose environment in diabetic patients also makes them susceptible to bacterial infection. Therefore, diabetic foot ulcer (DFU) usually presents as a nonhealing wound. To efficaciously prevent and treat DFU, we proposed a near-infrared (NIR) responsive microneedle (MN) patch hierarchical microparticle (HMP)-ZnO-MN-vascular endothelial growth factor and basic fibroblast growth factor (H-Z-MN-VEGF&bFGF), which could deliver drugs to the limbs painlessly, accurately, and controllably under NIR irradiation. Therein, the hair-derived HMPs exhibited the capacity of scavenging ROS, thereby preventing damage to the blood vessels. Meanwhile, zinc oxide (ZnO) nanoparticles endowed the MN patch with excellent antibacterial activity which could be further enhanced with the photothermal effect of HMPs under NIR irradiation. Moreover, vascular endothelial growth factor and basic fibroblast growth factor could promote the angiogenesis. A series of experiments proved that the MN patch exhibited broad-spectrum antibacterial and anti-inflammatory capacities. In vivo, it obviously increased the temperature of fingertips in diabetic rats as well as promoted collagen deposition and angiogenesis during wound healing. In conclusion, this therapeutic platform provides a promising method for the prevention and treatment of DFU.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Foot , Zinc Oxide , Rats , Animals , Diabetic Foot/prevention & control , Diabetic Foot/drug therapy , Diabetes Mellitus, Experimental/complications , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/pharmacology , Vascular Endothelial Growth Factor A/therapeutic use , Reactive Oxygen Species/pharmacology , Fibroblast Growth Factor 2/pharmacology , Fibroblast Growth Factor 2/therapeutic use , Zinc Oxide/pharmacology , Zinc Oxide/therapeutic use , Wound Healing , Hair/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
20.
Stem Cell Res Ther ; 13(1): 224, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35659360

ABSTRACT

BACKGROUND: Liver fibrosis is an outcome of restoring process in chronic liver injury. Human amniotic mesenchymal stem cells (hAMSCs) derived from amniotic membrane have multilineage differentiation, immunosuppressive, and anti-inflammatory potential which makes them suitable for treating liver fibrosis. This study aimed to explore the effect and mechanism of hAMSCs on liver fibrosis. METHODS: hAMSCs were transplanted into carbon tetrachloride (CCl4)-induced liver fibrosis mice via tail vein, and the effects of hAMSCs on hepatic fibrosis were assessed. The effects of hAMSCs and hAMSCs conditional medium (CM) on the activation of hepatic stellate cells (HSCs) were investigated in vivo and in vitro. Antibody array assay was used to identify the cytokines secreted by hAMSCs that may inhibit the activation of HSCs. Finally, the underlying mechanisms were explored by assessing IGF-1R/PI3K/AKT and GSK3ß/ß-catenin signaling pathways in the activated HSCs (LX-2) with hAMSCs and hAMSCs transfected with corresponding siRNAs. RESULTS: Our results showed that hAMSCs possessed the characterizations of mesenchymal stem cells. hAMSCs significantly reduced liver fibrosis and improved liver function in mice by inhibiting HSCs activation in vivo. Both hAMSCs and hAMSC-CM remarkably inhibited the collagen deposition and activation of LX-2 cells in vitro. Antibody array assay showed that insulin-like growth factor binding protein-3 (IGFBP-3), Dickkopf-3 (DKK-3), and Dickkopf-1 (DKK-1) were highly expressed in the co-culture group and hAMSC-CM group compared with LX-2 group. Western blot assay demonstrated that IGFBP-3, DKK-3, and DKK-1 derived from hAMSCs inhibit LX-2 cell activation through blocking canonical Wnt signaling pathway. CONCLUSIONS: Our results demonstrated that IGFBP-3, Dkk3, and DKK-1 secreted by hAMSCs attenuated liver fibrosis in mice through inhibiting HSCs activation via depression of Wnt/ß-catenin signaling pathway, suggesting that hAMSCs or hAMSC-CM provides an alternative therapeutic approach for the treatment of liver fibrosis.


Subject(s)
Mesenchymal Stem Cells , Wnt Signaling Pathway , Amnion , Animals , Hepatic Stellate Cells/metabolism , Humans , Insulin-Like Growth Factor Binding Protein 3/metabolism , Liver Cirrhosis/chemically induced , Liver Cirrhosis/therapy , Mesenchymal Stem Cells/metabolism , Mice , Phosphatidylinositol 3-Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...