Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
Add more filters










Publication year range
2.
Int J Pharm ; 651: 123748, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38154533

ABSTRACT

Since ischemic stroke occurs by a combination of multiple mechanisms, therapies that modulate multiple mechanisms are required for its treatment. The combination of edaravone (EDA) and borneol can significantly ameliorate the symptoms of neurological deficits in cerebral ischemia-reperfusion model in rats. In this study, the solubility of borneol and edaravone was improved by hydroxypropyl-ß-cyclodextrin and PEG400. Furthermore, a nasal temperature-sensitive hydrogel containing both edaravone and borneol inclusion complex (EDA-BP TSGS) was developed to overcome the obstacles of ischemic stroke treatment including the obstruction of the blood-brain barrier (BBB) and the unavailability and untimely of intravenous injection. The effectiveness of the thermosensitive hydrogel was investigated in transient middle cerebral artery occlusion/reperfusion model rats (MCAO/R). The results showed that EDA-BP TSGS could significantly alleviate the symptoms of neurological deficits and decrease the cerebral infarct area and the degree of brain damage. In summary, nasal EDA-BP TSGS is a secure and effective brain-targeting formulation that may provide a viable option for the clinical prophylaxis and treatment of ischemic stroke.


Subject(s)
Brain Ischemia , Camphanes , Ischemic Stroke , Reperfusion Injury , Stroke , Rats , Animals , Edaravone/therapeutic use , Ischemic Stroke/drug therapy , Temperature , Antipyrine , Brain Ischemia/drug therapy , Infarction, Middle Cerebral Artery/drug therapy , Stroke/drug therapy , Reperfusion Injury/drug therapy
3.
ACS Nano ; 17(18): 17845-17857, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37712845

ABSTRACT

Brain inflammation is regarded as one of the leading causes that aggravates secondary brain injury and hinders the prognosis of ischemic stroke. After ischemic stroke, high quantities of peripheral neutrophils are recruited to brain lesions and release neutrophil extracellular traps (NETs), leading to the aggravation of blood-brain barrier (BBB) damage, activation of microglia, and ultimate neuronal death. Herein, a smart multifunctional delivery system has been developed to regulate immune disorders in the ischemic brain. Briefly, Cl-amidine, an inhibitor of peptidylarginine deiminase 4 (PAD4), is encapsulated into self-assembled liposomal nanocarriers (C-Lipo/CA) that are modified by reactive oxygen species (ROS)-responsive polymers and fibrin-binding peptide to achieve targeting ischemic lesions and stimuli-responsive release of a drug. In the mouse model of cerebral artery occlusion/reperfusion (MCAO), C-Lipo/CA can suppress the NETs release process (NETosis) and further inhibit the cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes (cGAS-STING) pathway in an ischemic brain. In addition, MCAO mice treated with C-Lipo/CA significantly mitigated ischemic and reperfusion injury, with a reduction in the area of cerebral infarction to 12.1%, compared with the saline group of about 46.7%. These results demonstrated that C-Lipo/CA, which integrated microglia regulation, BBB protection, and neuron survival, exerts a potential therapy strategy to maximize ameliorating the mortality of ischemic stroke.


Subject(s)
Extracellular Traps , Ischemic Stroke , Animals , Mice , Interferons , Nucleotides, Cyclic
4.
J Am Chem Soc ; 145(36): 19961-19968, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37651158

ABSTRACT

The search for highly active and selective catalysts with high precious metal atom utilization efficiency has attracted increasing interest in both the fundamental synthesis of materials and important industrial reactions. Here, we report the synthesis of Pd-Cu nanocubes with a Cu core and an ordered B2 intermetallic CuPd shell with controllable atomic layers on the surface (denoted as Cu/B2 CuPd), which can efficiently and robustly catalyze the selective hydrogenation of acetylene (C2H2) to ethylene (C2H4) under mild conditions. The optimized Cu/B2 CuPd with a Pd loading of 9.5 at. % exhibited outstanding performance in the C2H2 semi-hydrogenation with 100% C2H2 conversion and 95.2% C2H4 selectivity at 90 °C. We attributed this outstanding performance to the core/shell structure with a high surface density of active Pd sites isolated by Cu in the B2 intermetallic matrix, representing a structural motif of single-atom alloys (SAAs) on the surface. The combined experimental and computational studies further revealed that the electronic states of Pd and Cu are modulated by SAAs from the synergistic effect between Pd and Cu, leading to enhanced performance compared with pristine Pd and Cu catalysts. This study provides a new synthetic methodology for making single-atom catalysts with high precious metal atom utilization efficiency, enabling simultaneous tuning of both geometric and electronic structures of Pd active sites for enhanced catalysis.

5.
Nat Commun ; 14(1): 3647, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37339991

ABSTRACT

Stereoselective ring-opening polymerization catalysts are used to produce degradable stereoregular poly(lactic acids) with thermal and mechanical properties that are superior to those of atactic polymers. However, the process of discovering highly stereoselective catalysts is still largely empirical. We aim to develop an integrated computational and experimental framework for efficient, predictive catalyst selection and optimization. As a proof of principle, we have developed a Bayesian optimization workflow on a subset of literature results for stereoselective lactide ring-opening polymerization, and using the algorithm, we identify multiple new Al complexes that catalyze either isoselective or heteroselective polymerization. In addition, feature attribution analysis uncovers mechanistically meaningful ligand descriptors, such as percent buried volume (%Vbur) and the highest occupied molecular orbital energy (EHOMO), that can access quantitative and predictive models for catalyst development.

6.
Nanoscale ; 15(30): 12518-12529, 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37278298

ABSTRACT

Despite aggressive treatments, including surgery, chemotherapy and radiotherapy, the prognosis of glioblastoma (GBM) remains poor, and tumor recurrence is inevitable. The FDA-approved CDK4/6 inhibitor palbociclib (PB) showed interesting anti-GBM effects, but its brain penetration is limited by the blood-brain barrier. The aim of this project is to find whether the cellulose-based hydrogel via in situ injection could provide an alternative route to PB brain delivery and generate sufficient drug exposure in orthotopic GBM. In brief, PB was encapsulated in a cellulose nanocrystal network structure crosslinked by polydopamine via divalent Cu2+ and hexadecylamine. The formed hydrogel (PB@PH/Cu-CNCs) exhibited sustained drug retention and acid-responsive network de-polymerization for controlled release in vivo. Specifically, the released Cu2+ catalyzed a Fenton-like reaction to generate reactive oxygen species (ROS), which was further enhanced by PB, and consequently, irreversible senescence and apoptosis were induced in GBM cells. Finally, PB@PH/Cu-CNCs demonstrated a more potent anti-GBM effect than those treated with free PB or PH/Cu-CNCs (drug-free hydrogel) in cultured cells or in an orthotopic glioma model. These results prove that the injection of the PB-loaded hydrogel in situ is an effective strategy to deliver the CDK4/6 inhibitor into the brain and its anti-GBM effect can be further enhanced by combining Cu2+-mediated Fenton-like reaction.


Subject(s)
Glioblastoma , Cellulose/chemistry , Hydrogels/chemistry , Glioblastoma/drug therapy , Glioblastoma/metabolism , Humans , Female , Animals , Mice , Cell Line, Tumor , Mice, Inbred C57BL , Hydrogen-Ion Concentration , Cell Proliferation , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/therapeutic use , Cellular Senescence , Apoptosis , Reactive Oxygen Species/metabolism
7.
J Control Release ; 359: 224-233, 2023 07.
Article in English | MEDLINE | ID: mdl-37290721

ABSTRACT

Infiltrative glioma growth makes surgical excision incomplete, and the residual tumor cells proliferate rapidly. Residual glioma cells evade phagocytosis by macrophages through upregulating anti-phagocytosis molecule CD47, which binds to the signal regulatory protein alpha (SIRPα) of macrophages. Specifically, blocking the CD47-SIRPα pathway is a potential strategy for post-resection glioma treatment. In addition, the anti-CD47 antibody (α-CD47) in combination with temozolomide (TMZ) caused an enhanced pro-phagocytic effect due to the TMZ not only destroying DNA but also inducing endoplasmic reticulum stress response of glioma cells. However, the obstruction of the blood-brain barrier makes systemic combination therapy not ideal for post-resection glioma treatment. Herein, we designed a temperature-sensitive hydrogel system based on a moldable thermosensitive hydroxypropyl chitin (HPCH) copolymer to encapsulate both α-CD47 and TMZ as α-CD47&TMZ@Gel for in situ postoperative cavity administration. Through the in vitro and in vivo evaluations, α-CD47&TMZ@Gel significantly inhibited glioma recurrence post-resection through enhancement of pro-phagocytosis of macrophages, recruitment, and activation of CD8+ T cells and NK cells.


Subject(s)
Glioblastoma , Glioma , Humans , Glioblastoma/drug therapy , Glioblastoma/surgery , Glioblastoma/metabolism , Temozolomide/therapeutic use , CD8-Positive T-Lymphocytes/pathology , Receptors, Immunologic , Glioma/drug therapy
8.
J Plant Res ; 136(4): 563-576, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37133572

ABSTRACT

Using effective genes to improve crop stress tolerance through genetic engineering is an important way to stabilize crop yield and quality across complex climatic environments. Integrin-like AT14A, as a continuum of the cell wall-plasma membrane-cytoskeleton, functions in the regulation of cell wall synthesis, signal transduction, and the response to stress. In this study, AT14A was overexpressed in Solanum lycopersicum L. In transgenic plants, both chlorophyll content and net photosynthetic rate increased. Physiological experiments suggested that the proline content and antioxidant enzyme (superoxide dismutase, catalase, peroxidase) activities of the transgenic line were significantly higher than those of wild-type plants under stress, which contributed to the enhanced water retention capacity and free radical scavenging ability of the transgenic line. Transcriptome analysis revealed that AT14A enhanced drought tolerance by regulating waxy cuticle synthesis genes, such as 3-ketoacyl-CoA synthase 20 (KCS20), non-specific lipid-transfer protein 2 (LTP2), antioxidant enzyme system genes peroxidase 42-like (PER42), and dehydroascorbate reductase (DHAR2). AT14A regulates expression of Protein phosphatase 2 C 51 (PP2C 51) and ABSCISIC ACID-INSENSITIVE 5 (ABI5) to participate in ABA pathways to enhance drought tolerance. In conclusion, AT14A effectively improved photosynthesis and enhanced drought tolerance in S. lycopersicum.


Subject(s)
Arabidopsis , Solanum lycopersicum , Arabidopsis/genetics , Arabidopsis/metabolism , Solanum lycopersicum/genetics , Drought Resistance , Integrins/genetics , Integrins/metabolism , Antioxidants/metabolism , Droughts , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Gene Expression Regulation, Plant , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Abscisic Acid/metabolism
9.
EBioMedicine ; 90: 104499, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36870200

ABSTRACT

BACKGROUND: Chemotherapy-induced peripheral neuropathy (CIPN) is a severe dose-limiting side effect of chemotherapy and remains a huge clinical challenge. Here, we explore the role of microcirculation hypoxia induced by neutrophil extracellular traps (NETs) in the development of CIPN and look for potential treatment. METHODS: The expression of NETs in plasma and dorsal root ganglion (DRG) are examined by ELISA, IHC, IF and Western blotting. IVIS Spectrum imaging and Laser Doppler Flow Metry are applied to explore the microcirculation hypoxia induced by NETs in the development of CIPN. Stroke Homing peptide (SHp)-guided deoxyribonuclease 1 (DNase1) is used to degrade NETs. FINDINGS: The level of NETs in patients received chemotherapy increases significantly. And NETs accumulate in the DRG and limbs in CIPN mice. It leads to disturbed microcirculation and ischemic status in limbs and sciatic nerves treated with oxaliplatin (L-OHP). Furthermore, targeting NETs with DNase1 significantly reduces the chemotherapy-induced mechanical hyperalgesia. The pharmacological or genetic inhibition on myeloperoxidase (MPO) or peptidyl arginine deiminase-4 (PAD4) dramatically improves microcirculation disturbance caused by L-OHP and prevents the development of CIPN in mice. INTERPRETATION: In addition to uncovering the role of NETs as a key element in the development of CIPN, our finding provides a potential therapeutic strategy that targeted degradation of NETs by SHp-guided DNase1 could be an effective treatment for CIPN. FUNDING: This study was funded by the National Natural Science Foundation of China81870870, 81971047, 81773798, 82271252; Natural Science Foundation of Jiangsu ProvinceBK20191253; Major Project of "Science and Technology Innovation Fund" of Nanjing Medical University2017NJMUCX004; Key R&D Program (Social Development) Project of Jiangsu ProvinceBE2019732; Nanjing Special Fund for Health Science and Technology DevelopmentYKK19170.


Subject(s)
Antineoplastic Agents , Extracellular Traps , Peripheral Nervous System Diseases , Mice , Animals , Extracellular Traps/metabolism , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/drug therapy , Oxaliplatin/adverse effects , Hyperalgesia/chemically induced , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Antineoplastic Agents/adverse effects
10.
Nat Commun ; 14(1): 792, 2023 Feb 11.
Article in English | MEDLINE | ID: mdl-36774355

ABSTRACT

The electrochemical ammonia oxidation to dinitrogen as a means for energy and environmental applications is a key technology toward the realization of a sustainable nitrogen cycle. The state-of-the-art metal catalysts including Pt and its bimetallics with Ir show promising activity, albeit suffering from high overpotentials for appreciable current densities and the soaring price of precious metals. Herein, the immense design space of ternary Pt alloy nanostructures is explored by graph neural networks trained on ab initio data for concurrently predicting site reactivity, surface stability, and catalyst synthesizability descriptors. Among a few Ir-free candidates that emerge from the active learning workflow, Pt3Ru-M (M: Fe, Co, or Ni) alloys were successfully synthesized and experimentally verified to be more active toward ammonia oxidation than Pt, Pt3Ir, and Pt3Ru. More importantly, feature attribution analyses using the machine-learned representation of site motifs provide fundamental insights into chemical bonding at metal surfaces and shed light on design strategies for high-performance catalytic systems beyond the d-band center metric of binding sites.

12.
Plant Sci ; 326: 111526, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36343868

ABSTRACT

Aquaporins, the major facilitators of water transport across membranes, are involved in growth and development and adaptation to drought stress in plants. In this study, a plasma membrane intrinsic protein (SiPIP2;4) was cloned from Saussurea involucrata, a cold-tolerant hardy herb. The expression of SiPIP2;4 increased the stomatal density and sensitivity of tobacco (Nicotiana tabacum), thus, affecting the plant's growth and resistance to the diverse water environment. The higher stomatal density under well-watered conditions effectively promoted the photosynthetic rate, which led to the rapid growth of transgenic lines. The stomata in the transgenic lines responded more sensitively to the vapor pressure deficit than the wild-type under different levels of ambient humidity. Their stomatal apertures positively correlated with the ambient humidity. Under drought conditions, the overexpression of SiPIP2;4 promoted rapid stomatal closure, reduced water dissipation, and enhanced drought tolerance. These results indicate that SiPIP2;4 regulates the density and sensitivity of plant stomata, thus, playing an important role in balancing plant growth and stress tolerance. This suggests that SiPIP2;4 has the potential to serve as a genetic resource for crop improvement.


Subject(s)
Nicotiana , Saussurea , Nicotiana/metabolism , Saussurea/genetics , Saussurea/metabolism , Gene Expression Regulation, Plant , Plants, Genetically Modified/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Drought Resistance , Stress, Physiological/genetics , Droughts , Plant Stomata/physiology , Water/metabolism
13.
J Am Chem Soc ; 144(46): 21255-21266, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36322840

ABSTRACT

The local coordination structure of metal sites essentially determines the performance of supported metal catalysts. Using a surface defect enrichment strategy, we successfully fabricated Pt atomic single-layer (PtASL) structures with 100% metal dispersion and precisely controlled local coordination environment (embedded vs adsorbed) derived from Pt single-atoms (Pt1) on ceria-alumina supports. The local coordination environment of Pt1 not only governs its catalytic activity but also determines the Pt1 structure evolution upon reduction activation. For CO oxidation, the highest turnover frequency can be achieved on the embedded PtASL in the CeO2 lattice, which is 3.5 times of that on the adsorbed PtASL on the CeO2 surface and 10-70 times of that on Pt1. The favorable CO adsorption on embedded PtASL and improved activation/reactivity of lattice oxygen within CeO2 effectively facilitate the CO oxidation. This work provides new insights for the precise control of the local coordination structure of active metal sites for achieving 100% atomic utilization efficiency and optimal intrinsic catalytic activity for targeted reactions simultaneously.

14.
ACS Appl Mater Interfaces ; 14(24): 27623-27633, 2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35673881

ABSTRACT

Glioma is the most lethal brain tumor with a poor prognosis, and a combination of multiple therapeutic strategies is critical for postoperative glioma treatment. Herein, a multifunctional hybrid hydrogel system (designated as CP&CL@RNPPTX-Gel) was developed for local treatment of postoperative glioma. The system was composed of self-illuminating chlorin e6 (Ce6) conjugated with luminol molecule (CL)-loaded glioma-targeting paclitaxel prodrug nanoparticles and copper peroxide nanodots (CP NDs) coembedded into a three-dimensional thermosensitive hydroxypropyl chitin hydrogel frame. After injection of CP&CL@RNPPTX-Gel into the cavity of postoperative glioma, the solution could be cross-linked into the gel as a drug reservoir under body temperature stimulation. Then, the sustained-released CP NDs decomposed into Cu2+ and H2O2 in the acidic microenvironment of the glioma cells to exert chemodynamic therapy (CDT). Meanwhile, Cu2+ could catalyze the self-luminescence of CL to induce photodynamic therapy (PDT) without external excitation light. Moreover, paclitaxel prodrug nanoparticles degraded into paclitaxel to restrain residual glioma cells in response to intracellular reduced glutathione (GSH). The in vitro and in vivo results showed that CP&CL@RNPPTX-Gel had great potential as a multifunctional hybrid hydrogel system with remarkable therapeutic effects for postoperative glioma treatment via a combination of chemotherapy, CDT, and PDT.


Subject(s)
Glioma , Nanoparticles , Photochemotherapy , Prodrugs , Cell Line, Tumor , Copper/pharmacology , Glioma/drug therapy , Glioma/surgery , Humans , Hydrogels/pharmacology , Hydrogen Peroxide/pharmacology , Nanoparticles/therapeutic use , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Prodrugs/pharmacology , Tumor Microenvironment
15.
J Nanobiotechnology ; 20(1): 248, 2022 May 31.
Article in English | MEDLINE | ID: mdl-35641956

ABSTRACT

From the global perspective, stroke refers to a highly common cause of disability and death. Ischemic stroke (IS), attributed to blood vessel blockage, preventing the flow of blood to brain, acts as the most common form of stroke. Thus far, thrombolytic therapy is the only clinical treatment for IS with the approval from the FDA. Moreover, the physiology barrier complicates therapeutically and diagnostically related intervention development of IS. Accordingly, developing efficient and powerful curative approaches for IS diagnosis and treatment is urgently required. The advent of nanotechnology has brought dawn and hope to better curative and imaging forms for the management of IS. This work reviews the recent advances and challenges correlated with the nano drug delivery system for IS therapy and diagnosis. The overview of the current knowledge of the important molecular pathological mechanisms in cerebral ischemia and how the drugs cross the blood brain barrier will also be briefly summarized.


Subject(s)
Brain Ischemia , Ischemic Stroke , Stroke , Brain Ischemia/drug therapy , Humans , Nanoparticle Drug Delivery System , Precision Medicine , Stroke/drug therapy
16.
Acta Biomater ; 147: 314-326, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35588994

ABSTRACT

Reperfusion injury is one of the major causes of disability and death caused by ischemic stroke, and drug development focuses mainly on single neuron protection. However, different kinds of cells in the neurovascular units (NVUs), including neurons, microglia and vascular endothelial cells, are pathologically changed after cerebral ischemia-reperfusion injury, resulting in an urgent need to develop a drug delivery system to comprehensively protect the kinds of cells involved in the NVU. Herein, we have constructed a c(RGDyK) peptide modified, NF-κB inhibitor caffeic acid phenethyl ester (CAPE)-loaded and reactive nitrogen species (RNS) stimuli-responsive liposomal nanocarrier (R-Lipo-CAPE) to target ischemic lesions and then remodel the NVU to reduce the progression of cerebral ischemia-reperfusion injury. The R-Lipo-CAPE liposomes were approximately 170 nm with a zeta potential of -30.8 ± 0.2 mV. The in vitro CAPE release behavior from R-Lipo-CAPE showed an RNS-dependent pattern. For in vivo studies, transient middle cerebral artery occlusion/reperfusion (MCAO) model mice treated with R-Lipo-CAPE had the least neurological impairment and decreased brain tissue damage, with an infarct area of 13%, compared with those treated with saline of 53% or free CAPE of 38%. Furthermore, microglia in the ischemic brain were polarized to the tissue-repairing M2 phenotype after R-Lipo-CAPE treatment. In addition, R-Lipo-CAPE-treated mice displayed a prominent down-regulated expression of MMP-9 and restored expression of the tight junction protein claudin-5. This proof-of-concept indicates that R-Lipo-CAPE is a promising nanomedicine for the treatment of cerebral ischemia-reperfusion injury through the regulation of neurovascular units. STATEMENT OF SIGNIFICANCE: Based on the complex mechanism and difficulty in treatment of cerebral ischemia-reperfusion injury, the overall regulation of neurovascular unit has become an extremely important target. However, little nanomedicine has been directed to remodel the neurovascular units in targeted cerebral ischemia-reperfusion injury therapy. Here, c(RGDyK) peptide modified reactive nitrogen species (RNS) stimuli-responsive liposomal nanocarrier loaded with a NF-κB inhibitor (CAPE), was designed to simultaneously regulate various cells in the microenvironment of cerebral ischemia-reperfusion injury to remodel the neurovascular units. Our in vitro and in vivo data showed that the intelligent nanocarrier exerted the ability of pathological signal stimuli-responsive drug release, cerebral ischemia-reperfusion injury site targeting and neurovascular units remodeling through reducing neuron apoptosis, regulating microglia polarization and repairing vascular endothelial cell. Overall, the intelligent liposomal drug delivery system was a promising and safe nanomedicine in the perspective of cerebral ischemia-reperfusion injury treatment.


Subject(s)
Brain Ischemia , Reperfusion Injury , Animals , Brain Ischemia/drug therapy , Brain Ischemia/pathology , Endothelial Cells/metabolism , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/pathology , Mice , NF-kappa B/metabolism , Reactive Nitrogen Species , Reperfusion Injury/drug therapy , Reperfusion Injury/pathology
17.
Nat Commun ; 13(1): 2338, 2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35487883

ABSTRACT

The electrochemical nitrate reduction reaction (NO3RR) to ammonia is an essential step toward restoring the globally disrupted nitrogen cycle. In search of highly efficient electrocatalysts, tailoring catalytic sites with ligand and strain effects in random alloys is a common approach but remains limited due to the ubiquitous energy-scaling relations. With interpretable machine learning, we unravel a mechanism of breaking adsorption-energy scaling relations through the site-specific Pauli repulsion interactions of the metal d-states with adsorbate frontier orbitals. The non-scaling behavior can be realized on (100)-type sites of ordered B2 intermetallics, in which the orbital overlap between the hollow *N and subsurface metal atoms is significant while the bridge-bidentate *NO3 is not directly affected. Among those intermetallics predicted, we synthesize monodisperse ordered B2 CuPd nanocubes that demonstrate high performance for NO3RR to ammonia with a Faradaic efficiency of 92.5% at -0.5 VRHE and a yield rate of 6.25 mol h-1 g-1 at -0.6 VRHE. This study provides machine-learned design rules besides the d-band center metrics, paving the path toward data-driven discovery of catalytic materials beyond linear scaling limitations.

18.
J Control Release ; 345: 786-797, 2022 05.
Article in English | MEDLINE | ID: mdl-35367277

ABSTRACT

It is well known that glioma is currently the most malignant brain tumor. Because of the existence of blood-brain barrier (BBB) and tumor cell heterogeneity, systemic chemotherapy exerts unsatisfied therapeutic effect for the treatment of glioma after surgical resection and may even damage the body's immune system. Here, we developed an in situ sustained-release hydrogel delivery system for combined chemo-immunotherapy of glioma by combined chemotherapy drug and immunoadjuvant through the resection cavity local delivery. Briefly, glioma homing peptide modified paclitaxel targeting nanoparticles (PNPPTX) and mannitolated immunoadjuvant CpG targeting nanoparticles (MNPCpG) were embedded into PLGA1750-PEG1500-PLGA1750 thermosensitive hydrogel framework (PNPPTX&MNPCpG@Gel). The in vitro and in vivo results showed that the targeting nanoparticles-hydrogel hybrid system could cross-link into a gel drug reservoir when injected into the resection cavity of glioma. And then, the sustained-release PNPPTX could target the residual infiltration glioma cells and produce tumor antigens. Meanwhile, MNPCpG targeted and activated the antigen-presenting cells, which enhanced the tumor antigen presentation ability and activated CD8+T and NK cells to reverse immunosuppression of glioma microenvironment. This study indicated that the PNPPTX&MNPCpG@Gel system could enhance the therapeutic effect of glioma by chemo-immunotherapy.


Subject(s)
Brain Neoplasms , Glioma , Nanoparticles , Adjuvants, Immunologic/therapeutic use , Antigens, Neoplasm/therapeutic use , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Cell Line, Tumor , Delayed-Action Preparations/therapeutic use , Drug Delivery Systems , Glioma/drug therapy , Glioma/pathology , Humans , Hydrogels/therapeutic use , Immunologic Factors/therapeutic use , Immunotherapy , Tumor Microenvironment
19.
Nanoscale Horiz ; 7(5): 508-514, 2022 May 03.
Article in English | MEDLINE | ID: mdl-35226011

ABSTRACT

The electrochemical CO2 reduction reaction (ECO2RR) driven by renewable electricity holds promise to store intermittent energy in chemical bonds, while producing value-added chemicals and fuels sustainably. Unfortunately, it remains a grand challenge to simultaneously achieve a high faradaic efficiency (FE), a low overpotential, and a high current density of the ECO2RR. Herein, we report the synthesis of heterostructured Bi-Cu2S nanocrystals via a one-pot solution-phase method. The epitaxial growth of Cu2S on Bi leads to abundant interfacial sites and the resultant heterostructured Bi-Cu2S nanocrystals enable highly efficient ECO2RR with a largely reduced overpotential (240 mV lower than that of Bi), a near-unity FE (>98%) for formate production, and a high partial current density (2.4- and 5.2-fold higher JHCOO- than Cu2S and Bi at -1.0 V vs. reversible hydrogen electrode, RHE). Density functional theory (DFT) calculations show that the electron transfer from Bi to Cu2S at the interface leads to the preferential stabilization of the formate-evolution intermediate (*OCHO).

20.
ACS Appl Mater Interfaces ; 13(50): 59683-59694, 2021 Dec 22.
Article in English | MEDLINE | ID: mdl-34902970

ABSTRACT

Tumor-associated neutrophil extracellular traps (NETs) play a critical role in promoting tumor growth and assisting tumor metastasis. Herein, a smart nanocarrier (designated as mP-NPs-DNase/PTX) based on regulating tumor-associated NETs has been developed, which consists of a paclitaxel (PTX) prodrug nanoparticle core and a poly-l-lysine (PLL) conjugated with the matrix metalloproteinase 9 (MMP-9)-cleavable Tat-peptide-coupled deoxyribonuclease I (DNase I) shell. After accumulating at the site of the tumor tissue, the nanocarrier can release DNase I in response to MMP-9 to degrade the structure of NETs. Then, the remaining moiety can uptake the tumor cells via the mediation of exposed cell penetrating peptide, and the PTX prodrug nanoparticles will lyse in response to the high intracellular concentration of reduced glutathione to release PTX to exert a cytotoxic effect of tumor cells. Through in vitro and in vivo evaluations, it has been proven that mP-NPs-DNase/PTX could serve as potential NET-regulated nanocarrier for enhanced inhibition of malignant tumor growth and distant metastasis.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents/pharmacology , Biocompatible Materials/pharmacology , Extracellular Traps/metabolism , Neutrophils/metabolism , Paclitaxel/pharmacology , Prodrugs/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/metabolism , Biocompatible Materials/chemistry , Biocompatible Materials/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Carriers/chemistry , Drug Screening Assays, Antitumor , Extracellular Traps/chemistry , Humans , Materials Testing , Mice , Mice, Inbred BALB C , Mice, Inbred ICR , Mice, Nude , Nanoparticles/chemistry , Neutrophils/chemistry , Paclitaxel/chemistry , Paclitaxel/metabolism , Prodrugs/chemistry , Prodrugs/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...