Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Publication year range
1.
Molecules ; 28(8)2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37110638

ABSTRACT

Mesoporous materials, which exhibit great potential in the control of polymorphs and delivery of poorly water-soluble drugs, have obtained considerable attention in the field of pharmaceutical science. The physical properties and release behaviors of amorphous or crystalline drugs may be affected by formulating them into mesoporous drug delivery systems. In the past few decades, an increasing amount of papers have been written about mesoporous drug delivery systems, which play a crucial role in improving the properties of drugs. Herein, mesoporous drug delivery systems are comprehensively reviewed in terms of their physicochemical characteristics, control of polymorphic forms, physical stability, in vitro performance, and in vivo performance. Moreover, the challenges and strategies of developing robust mesoporous drug delivery systems are also discussed.


Subject(s)
Drug Delivery Systems , Silicon Dioxide , Pharmaceutical Preparations/chemistry , Delayed-Action Preparations , Silicon Dioxide/chemistry , Physical Phenomena , Water , Solubility , Drug Carriers/chemistry , Porosity , Drug Liberation
2.
Molecules ; 28(2)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36677670

ABSTRACT

Cocrystallization is currently an attractive technique for tailoring the physicochemical properties of active pharmaceutical ingredients (APIs). Flavonoids are a large class of natural products with a wide range of beneficial properties, including anticancer, anti-inflammatory, antiviral and antioxidant properties, which makes them extensively studied. In order to improve the properties of flavonoids, such as solubility and bioavailability, the formation of cocrystals may be a feasible strategy. This review discusses in detail the possible hydrogen bond sites in the structure of APIs and the hydrogen bonding networks in the cocrystal structures, which will be beneficial for the targeted synthesis of flavonoid cocrystals. In addition, some successful studies that favorably alter the physicochemical properties of APIs through cocrystallization with coformers are also highlighted here. In addition to improving the solubility and bioavailability of flavonoids in most cases, flavonoid cocrystals may also alter their other properties, such as anti-inflammatory activity and photoluminescence properties.


Subject(s)
Chemistry, Pharmaceutical , Flavonoids , Chemistry, Pharmaceutical/methods , Crystallization , Biological Availability , Pharmaceutical Preparations , Solubility
3.
AAPS PharmSciTech ; 23(7): 250, 2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36071310

ABSTRACT

Nanoparticles based on bovine serum albumin (BSA), which shares 76% homology with human serum albumin (HSA), have emerged as a promising candidate for the efficient delivery of anticancer drugs. Thermal-driven self-assembly is a novel organic solvent-free approach to produce albumin nanoparticles. In our previous study, some features of this nanoparticle such as drug loading efficiency, drug encapsulation efficiency and drug release kinetics have been evaluated. However, the formation mechanism that determines the above nanoparticle properties remains unclear. Here, we investigated the formation kinetics and mechanism using spectroscopic methods including fluorescence spectroscopy, circular dichroism (CD) and differential scanning calorimetry (DSC). We also applied chemical analysis methods that measured the content changes of albumin active groups and vanillin. To verify the covalent networks in the nanoparticles, trypsin and glutathione (GSH) were used separately to cleave the peptide bonds and disulfide bridges, and dynamic light scattering (DLS) and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) were used to analyze the degraded samples. BSA nanoparticles started to form at 10 min and were completely formed at 120 min. With the digestion of trypsin, more than 50% of the nanoparticles were degraded within 60 min. CD spectra showed that α-helical structure of BSA decreased from 42.3% to 39.8% and 37.7% after heating for 10 and 60 min, respectively. In the DSC thermogram, the melting peak of BSA nanoparticles was 229.14℃, which is about 12℃ higher than the physical mixture of BSA and vanillin, indicating that chemical reactions occurred during the nanoparticle formation and formed a new more stable substance. Moreover, the results of active group assay, GSH degradation and SDS-PAGE experiments also proved that disulfide bonds and peptide bonds were formed between BSA molecules, whereas Schiff bases were formed between BSA and vanillin molecules. Formation kinetics and degradation behavior are important properties to characterize albumin nanoparticles and should be paid attention to. Not only that, this study also provides an effective way to study the formation mechanism of protein-based nanodrug delivery systems.


Subject(s)
Drug Delivery Systems , Nanoparticles , Disulfides , Humans , Nanoparticles/chemistry , Particle Size , Peptides , Serum Albumin, Bovine/chemistry , Trypsin
4.
Int J Pharm ; 625: 122076, 2022 Sep 25.
Article in English | MEDLINE | ID: mdl-35931394

ABSTRACT

Small cell lung cancer (SCLC), considered a mortal recalcitrant cancer, is a severe healthcare issue because of its poor prognosis, early metastasis, drug resistance and limited clinical treatment options. In our previous study, we established a MRP1-targeted antibody-IR700 system (Mab-IR700) for near infrared photoimmunotherapy (NIR-PIT) which exhibited a promising therapeutic effect on drug resistant H69AR cells both in vitro and in vivo, though the tumor growth suppression effect did not last long with a single round of PIT treatment. To achieve a better anticancer effect, we have combined Mab-IR700-mediated NIR-PIT with liposomal doxorubicin (Doxil®) and investigated the in vitro and in vivo cytotoxicity by using a H69AR/3T3 cell co-culture model in which 3T3 cells were used to mimic stromal cells. Cytotoxicity experiments demonstrated the specificity of Mab-IR700 to H69AR cells, while cytotoxicity and flow cytometry experiments confirmed that H69AR cells were doxorubicin-resistant. Compared with Mab-IR700-mediated PIT or Doxil-mediated chemotherapy, the combination therapy exhibited the best cell killing effect in vitro and superior tumor growth inhibition and survival prolongation effect in vivo. Super enhanced permeability and retention (SUPR) effect was observed in both co-culture spheroids and tumor-bearing mice. Owing to an approximately 9-fold greater accumulation of Doxil within the tumors, NIR-PIT combined with Doxil resulted in enhanced antitumor effects compared to NIR-PIT alone. This photoimmunochemotherapy is a practical strategy for the treatment of chemoresistant SCLC and should be further investigated for clinical translation.


Subject(s)
Lung Neoplasms , Small Cell Lung Carcinoma , Animals , Cell Line, Tumor , Doxorubicin/analogs & derivatives , Doxorubicin/pharmacology , Immunotherapy/methods , Lung Neoplasms/drug therapy , Mice , Multidrug Resistance-Associated Proteins , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Phototherapy/methods , Polyethylene Glycols , Small Cell Lung Carcinoma/drug therapy , Xenograft Model Antitumor Assays
5.
AAPS PharmSciTech ; 23(1): 16, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34893936

ABSTRACT

Amorphization is one of the most effective pharmaceutical approaches to enhance the dissolution and oral bioavailability of poorly water-soluble drugs. In recent years, amorphous formulations have been experiencing rapid development both in theoretical and practical application. Based on using different types of stabilizing agents, amorphous formulations can be mainly classified as polymer-based amorphous solid dispersion, coamorphous formulation, mesoporous silica-based amorphous formulation, etc. This paper summarizes recent advances in the dissolution and supersaturation of these amorphous formulations. Moreover, we also highlight the roles of stabilizing agents such as polymers, low molecular weight co-formers, and mesoporous silica. Maintaining supersaturation in solution is a key factor for the enhancement of dissolution profile and oral bioavailability, and thus, the strategies and challenges for maintaining supersaturation are also discussed. With an in-depth understanding of the inherent mechanisms of dissolution behaviors, the design of amorphous pharmaceutical formulations will become more scientific and reasonable, leading to vigorous development of commercial amorphous drug products.


Subject(s)
Polymers , Water , Biological Availability , Excipients , Solubility
6.
Sheng Wu Gong Cheng Xue Bao ; 37(9): 3088-3100, 2021 Sep 25.
Article in Chinese | MEDLINE | ID: mdl-34622619

ABSTRACT

Photoimmunotherapy (PIT) is an emerging tumor-targeted phototherapy that combines the tumor specificity of monoclonal antibodies with the phototoxicity of light absorbers to rapidly and selectively induce the immunogenic death of target tumor cells. PIT has minimal side effects due to its high specificity. The immunogenic cell death induced by PIT results in rapid maturation of immature dendritic cells proximal to dying tumor cells. Subsequently, the mature dendritic cells present the tumor antigens to CD8+ T cells and induce their activation and proliferation, thus enhancing the antitumor immune response of the host. PIT can also improve the anticancer efficacy by enhancing the penetration of nanomedicines into tumor tissues. In view of the excellent application prospects of PIT, this review summarizes the advances in the immune activation mechanism of PIT, the superenhanced permeability and retention effect, and the new strategies for combinatory therapy, providing references for future research and clinical translation.


Subject(s)
Neoplasms , Photosensitizing Agents , Antibodies, Monoclonal/therapeutic use , Humans , Immunotherapy , Neoplasms/therapy , Phototherapy
7.
Int J Pharm ; 604: 120760, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34077781

ABSTRACT

Small cell lung cancer (SCLC), one of the most aggressive cancers, has a high mortality rate and poor prognosis, and the clinical therapeutic outcomes of multidrug resistant SCLC are even worse. Multidrug resistance protein 1 (MRP1), one of the ATP-binding cassette (ABC) transporter proteins that cause decreased drug accumulation in cancer cells, is overexpressed in drug resistant SCLC cells and could be a promising target for treating the patients suffering from this illness. Near infrared photoimmunotherapy (NIR-PIT) is a newly developed approach for targeted cancer treatment which uses a conjugate of a monoclonal antibody and photoabosorber IR700 followed by NIR light irradiation to induce rapid cancer cell death. In the present study, an anti-MRP1 antibody (Mab) -IR700 conjugate (Mab-IR700) was synthesized, purified and used to treat chemoresistant SCLC H69AR cells that overexpressed MRP1, while non-MRP1-expressing H69 cells were used as a control. Then, the photokilling and tumor suppression effect were separately evaluated in H69AR cells both in vitro and in vivo. Higher cellular delivery of Mab-IR700 was detected in H69AR cells, whereas there was little uptake of IgG-IR700 in both H69 and H69AR cells. Due to the targeting activity of Mab, stronger photokilling effect was found both in H69AR cells and spheroids treated with Mab-IR700, while superior tumor suppression effect was also observed in the mice treated with Mab-IR700 and light illumination. Photoacoustic imaging results proved that oxygen was involved in NIR-PIT treatment, and TUNEL staining images showed the occurrence of cell apoptosis, which was also testified by HE staining. This research provides MRP1 as a novel target for PIT and presents a prospective way for treating drug resistant SCLC and, thus, should be further studied.


Subject(s)
Lung Neoplasms , Pharmaceutical Preparations , Small Cell Lung Carcinoma , ATP Binding Cassette Transporter, Subfamily B, Member 1 , Animals , Cell Line, Tumor , Humans , Immunotherapy , Infrared Rays , Lung Neoplasms/drug therapy , Mice , Photosensitizing Agents , Phototherapy , Prospective Studies , Small Cell Lung Carcinoma/drug therapy , Xenograft Model Antitumor Assays
8.
Int J Pharm ; 590: 119925, 2020 Nov 30.
Article in English | MEDLINE | ID: mdl-33011255

ABSTRACT

Compared to their crystalline forms, amorphous pharmaceutical solids present marvelous potential and advantages for effectively improving the oral bioavailability of poorly water-soluble drugs. A central issue in developing amorphous pharmaceutical solids is the stability against crystallization, which is particularly important for maintaining their advantages in solubility and dissolution rate. This review provides a comprehensive overview of recent studies focusing on the physical stability of amorphous pharmaceutical solids affected by nucleation, crystal growth, phase separation and the addition of polymers. Moreover, we highlight the novel technologies and theories in the field of amorphous pharmaceutical solids. Meanwhile, the challenges and strategies in maintaining the physical stability of amorphous pharmaceutical solids are also discussed. With a better understanding of physical stability, the more robust amorphous pharmaceutical formulations with desired pharmaceutical performance would be easier to achieve.


Subject(s)
Pharmaceutical Preparations , Polymers , Chemistry, Pharmaceutical , Crystallization , Drug Stability , Solubility
9.
Int J Nanomedicine ; 11: 3875-90, 2016.
Article in English | MEDLINE | ID: mdl-27574421

ABSTRACT

A novel method was developed here to prepare albumin-based nanoparticles (NPs) for improving the therapeutic and safety profiles of chemotherapeutic agents. This approach involved crosslinking bovine serum albumin (BSA) using a Schiff base-containing vanillin, into NPs and loading doxorubicin (DOX) into the NPs by incubation. The resultant NPs (DOX-BSA-V-NPs) displayed a particle size of 100.5±1.3 nm with a zeta potential of -23.05±1.45 mV and also showed high drug-loading efficiency and excellent stability with respect to storage and temperature. The encapsulation of DOX into the BSA-V-NPs was confirmed by dynamic scanning calorimetry and Raman spectroscopy. DOX-BSA-V-NPs exhibited a significantly faster DOX release at pH 6.5 than pH 7.4, as well as in a solution with a higher glutathione concentration. In vitro studies showed that the cellular uptake of DOX-BSA-V-NPs was time-dependent, concentration-dependent, and faster than free DOX, while the cytotoxicity of DOX-BSA-V-NPs (IC50 value of 3.693 µg/mL) was superior to free DOX (IC50 value of 4.007 µg/mL). More importantly, DOX-BSA-V-NPs showed a longer mean survival time of 24.83 days, a higher tumor inhibition rate of 56.66%, and a decreased distribution in the heart than other DOX formulations in animal studies using a tumor xenograft model. Thus, the vanillin-based albumin NPs were shown here to be a promising carrier for tumor-targeted delivery of chemotherapeutic agents and, thus, should be further studied.


Subject(s)
Antineoplastic Agents/administration & dosage , Doxorubicin/administration & dosage , Drug Carriers/administration & dosage , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Calorimetry , Cell Line, Tumor , Dose-Response Relationship, Drug , Doxorubicin/chemistry , Doxorubicin/pharmacokinetics , Doxorubicin/pharmacology , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Heart/drug effects , Humans , Hydrogen-Ion Concentration , Male , Mice , Particle Size , Schiff Bases , Serum Albumin, Bovine/chemistry , Spectrum Analysis, Raman , Tissue Distribution , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...