Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 19(15): 14354-69, 2011 Jul 18.
Article in English | MEDLINE | ID: mdl-21934799

ABSTRACT

A polymer-infiltrated P-S-N diode capacitor configuration is proposed and a high speed electro-optic phase shifter based on a silicon organic hybrid platform is designed and modeled. The structure enables fast carrier depletion in addition to the second order nonlinearity so that a large electro-optic overlapped volume is achievable. Moreover, the device speed can be significantly improved with the introduction of free carriers due to a reduced experienced transient capacitance. The advantages of the diode capacitor structure are highly suitable for application to a class of low aspect ratio slot waveguides where the RC limitation of the radio frequency response is minimized. According to our numerical results, by optimizing both the waveguide geometry and polarization mode, at least 269 GHz 3-dB bandwidth with high efficiency of 5.5 V-cm is achievable. More importantly, the device does not rely on strong optical confinement within the nano-slot, a feature that gives considerable tolerance in the use of nano-fabrication techniques. Finally, the high overlap and energy efficiency of the device can be applied to slow light or optical resonance media for realizing photonic integrated circuits-based green photonics.

2.
Opt Express ; 19(6): 5063-76, 2011 Mar 14.
Article in English | MEDLINE | ID: mdl-21445141

ABSTRACT

A compact silicon electro-optic modulator that operates in the breakdown delay based depletion mode is introduced. This operation mode has not previously been utilized for optical modulators, and represents a way to potentially achieve much higher modulation speeds and carrier extraction efficiencies without sacrificing energy efficiency, which is a critical criterion for realizing miniaturized sub-THz modulation components in silicon. Our study shows a speed of at least 238 GHz modulation is achievable along with an ultra-low energy consumption of 26.6 fJ/bit in a simple planar P+PNN+ diode example structure, which is embedded in a 2D hybrid photonic lattice mode gap resonator. The optical resonator itself is only 69 µm2 in footprint and is designed for optimized electro-optic sensitivity and conversion efficiency with reduced carrier scattering. Both the static and dynamic device performance are backed up by fully integrated 3D optical and 3D electrical numerical results. The compact device dimensions and low energy consumption are favorable to high density photonic integration.

SELECTION OF CITATIONS
SEARCH DETAIL
...