Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Prod Res ; : 1-10, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36945193

ABSTRACT

Mulberry (Morus alba L.) plants are rich in 1-deoxynojirimycin (DNJ), which is a potential α-glucosidase inhibitor exhibiting various physiological activities. Compared to other tissues, Morus alba L. seeds contain the highest DNJ content, however, the DNJ biosynthesis mechanisms are unclear. In this study, we examined fruits of 27 mulberry varieties and found that variety MS02 had the highest DNJ levels (22.28 mg/g), whereas variety MS15 contained the lowest DNJ levels (0.37 mg/g). Through comparative transcriptomics, 1,719 differentially expressed genes (DEGs) were identified, 1,170 of which were upregulated, and 549 were downregulated in MS02 compared to MS15. DEGs were associated with cellular processes, metabolic processes, and catalytic activity. Specifically, nine DEGs were identified to be involved in alkaloid biosynthesis pathways, according to Kyoto Encyclopaedia of Genes and Genomes enrichment analysis, and four enzymes, i.e. polyphenol oxidase, tyrosine aminotransferase, aromatic-L-amino-acid decarboxylase, and tropinone reductase, are proposed to play important roles in DNJ biosynthesis. In conclusion, DNJ biosynthesis in mulberry seeds appears to be mediated by upregulation of polyphenol oxidase, tyrosine aminotransferase, aromatic-L-amino-acid decarboxylase, and tropinone reductase.

2.
Food Technol Biotechnol ; 60(3): 321-329, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36320354

ABSTRACT

Research background: Anthocyanins possess valuable health-promoting activities with significant health benefits for humans. However, their instability is a limiting factor for their usage in functional foods and beverages. Experimental approach: In this work, a new method to enhance the stability of anthocyanins from mulberry fruit through acylation by using succinic acid as a selected acyl donor was explored. The Box-Behnken design of response surface methodology was applied to determine the optimized conditions for the acylation process. Results and conclusions: The highest acylation conversion rate was 79.04% at anthocyanins to succinic acid mass ratio 1:8.96, acylation duration 3 h and temperature 50 °C. Structural analysis of acylated anthocyanins revealed that succinic acid introduces a C-O-C bond and a hydroxyl group. The thermostability and light stability of mulberry anthocyanins were significantly improved after acylation, and the antioxidant activity expressed as total reducing power and Fe2+-chelating capacity of the acylated anthocyanins was also enhanced. Novelty and scientific contribution: Succinic acid acylation provides a novel method for stabilizing mulberry anthocyanins, as evidenced by the increased stability and antioxidant ability of anthocyanins, and thus facilitates its use in the food and nutraceutical industries.

3.
J Environ Manage ; 323: 116295, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36150354

ABSTRACT

The environmental pollution caused by silkworm (Bombyx mori) excrement is prominent, and rich in refractory cellulose is the bottleneck restricting the efficient recycling of silkworm excrement. This study was performed to investigate the effects of housefly larvae vermicomposting on the biodegradation of cellulose in silkworm excrement. After six days, a 58.90% reduction of cellulose content in treatment groups was observed, which was significantly higher than 11.5% of the control groups without housefly larvae. Three cellulose-degrading bacterial strains were isolated from silkworm excrement, which were identified as Bacillus licheniformis, Bacillus amyloliquefaciens, and Bacillus subtilis based on 16S rRNA gene sequence analysis. These three bacterial stains had a high cellulose degradation index (HC value ranged to between 1.86 and 5.97 and FPase ranged from 5.07 U/mL to 7.31 U/mL). It was found that housefly larvae increased the abundance of cellulose-degrading bacterial genus (Bacillus and Pseudomonas) by regulating the external environmental conditions (temperature and pH). Carbohydrate metabolism was the bacterial communities' primary function during vermicomposting based on the PICRUSt. The results of Tax4Fun indicated that the abundance of endo-ß-1,4-glucanase and exo-ß-1,4-glucanase increased rapidly and maintained at a higher level in silkworm excrement due to the addition of housefly larvae, which contributed to the accelerated degradation of cellulose in silkworm excrement. The finding of this investigation showed that housefly larvae can significantly accelerate the degradation of cellulose in silkworm excrement by increasing the abundance of cellulose-degrading bacterial genera and cellulase.


Subject(s)
Bombyx , Houseflies , Animals , Bacillus subtilis/metabolism , Bombyx/genetics , Bombyx/metabolism , Bombyx/microbiology , Cellulose/metabolism , Glucan 1,4-beta-Glucosidase/metabolism , Houseflies/genetics , Houseflies/metabolism , Larva/metabolism , Larva/microbiology , RNA, Ribosomal, 16S/genetics
4.
Pestic Biochem Physiol ; 177: 104899, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34301361

ABSTRACT

The silkworm, Bombyx mori (B. mori) is an important economic insect which ingests mulberry leaves and products the silk in industry. Chlorfenapyr is a new halogenated pyrrole insecticide which has been promoted for the control of mulberry insect pests in China. However, the detoxification mechanism of the silkworm to chlorfenapyr has not been investigated yet. In the present study, we first estimated the LC30 dose of chlorfenapyr for 3rd instar B. mori larvae, and then, in order to characterise the chlorfenapyr detoxification mechanism, the transcriptomes of chlorfenapyr-treated and untreated 3rd instar B. mori larvae were compared using RNA-sequencing. In total, 146, 533, 126 and 148, 957, 676 clean reads were obtained from insecticide-treated and control silkworm larvae, respectively, and these reads generated 10, 954 genes. The transcriptional profile of silkworm larvae was significantly influenced by chlorfenapyr treatment. A total of 1196 differentially expressed genes (DEGs) were identified in insecticide-treated and control B. mori larvae, in which 644 genes were upregulated and 552 genes were downregulated. Results showed that multiple DEGs were enriched in detoxication-related gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Eleven detoxifying enzyme genes which differentially expressed were screened, and their expression patterns were validated by qRT-PCR. Furthermore, we successfully knocked down all differentially upregulated detoxifying enzyme genes, and a bioassay showed that the mortality of chlorfenapyr-treated silkworm larvae was significantly higher after silencing these genes than in groups injected with dsGFP. The present study reveals the molecular basis of silkworm detoxification to chlorfenapyr exposure, and provides new insights into the management of insecticide damage in the silkworm.


Subject(s)
Bombyx , Animals , Bombyx/genetics , Bombyx/metabolism , China , Gene Expression Profiling , Insect Proteins/genetics , Insect Proteins/metabolism , Pyrethrins , Transcriptome
5.
J Nat Prod ; 84(5): 1534-1543, 2021 05 28.
Article in English | MEDLINE | ID: mdl-33979163

ABSTRACT

1-Deoxynojirimycin, an α-glucosidase inhibitor, possesses various biological activities such as antitumor, antidiabetic, and antiviral effects. However, the application of 1-deoxynojirimycin is restricted by its poor lipophilicity and low bioavailability. In this study, three 1-deoxynojirimycin derivatives (8-10) comprising 1-deoxynojirimycin and kaempferol were designed and synthesized to modify their pharmacokinetics and improve their antitumor efficacy. Among them, compound 10, a conjugate of 1-deoxynojirimycin and kaempferol linked through an undecane chain, exhibited excellent lipophilicity, antiproliferative effects, and α-glucosidase inhibitory activity. Compared with 1-deoxynojirimycin, kaempferol, and their combination, compound 10 downregulated cyclooxygenase-2 (COX-2) expression, arrested the cell cycle at the S phase, induced cellular apoptosis, and inhibited the migration of MCF-7 cells. Moreover, further investigation indicated that compound 10 induced MCF-7 cell apoptosis through a mitochondrial-mediated pathway via the loss of mitochondrial membrane potential. This led to increasing intracellular levels of reactive oxygen species (ROS) and Ca2+, the downregulation of Bcl-2 expression, and the upregulation of Bax levels.


Subject(s)
1-Deoxynojirimycin/pharmacology , Apoptosis/drug effects , Kaempferols/pharmacology , Mitochondria/drug effects , Calcium/metabolism , Cell Cycle Checkpoints/drug effects , Humans , MCF-7 Cells , Membrane Potential, Mitochondrial/drug effects , Proto-Oncogene Proteins c-bcl-2/metabolism , Reactive Oxygen Species/metabolism
6.
Food Funct ; 12(9): 4132-4141, 2021 May 11.
Article in English | MEDLINE | ID: mdl-33978000

ABSTRACT

Anthocyanin (cyanidin-3-O-glucose) is a natural water-soluble pigment with a robust antioxidant capacity. However, its poor stability and bioavailability limits its application as a functional food ingredient. This study explored the ability of the silkworm pupa protein-glucose (Spp-Glu) conjugate, developed under wet-heating conditions, to improve the thermal stability and antioxidant activity of cyanidin-3-O-glucose (C3G) at pH 3.0 and 6.8. The characterization experiments suggested that C3G complexed with the Spp-Glu conjugate could modify the protein's microenvironment and cause unfolding of the protein's secondary structures under varied pH conditions. Spectroscopic techniques further revealed the formation of complexes via hydrophobic interactions and static quenching processes when C3G was bound to Spp or Spp-Glu. The formation of these complexes effectively attenuated C3G degradation, thereby enhancing its stability under heat treatment over a range of pH values, and the experiments measuring antioxidant activity suggested that the Spp-Glu conjugate formed does not affect the efficacy of C3G after complexation. Therefore, our study suggests that Spp-Glu has the potential to effectively protect and deliver anthocyanins during industrial application for functional food formulation.


Subject(s)
Anthocyanins/chemistry , Anthocyanins/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Bombyx/chemistry , Glucose/chemistry , Insect Proteins/chemistry , Animals , Drug Stability , Functional Food , Hot Temperature , Humans , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , MCF-7 Cells , Oxidative Stress , Protein Structure, Secondary , Pupa/chemistry
7.
RSC Adv ; 11(61): 38703-38711, 2021 Nov 29.
Article in English | MEDLINE | ID: mdl-35493254

ABSTRACT

Hyperglycemia can be efficaciously regulated by inhibiting α-glucosidase activity and this is regarded as an effective strategy to treat type 2 diabetes. 1-Deoxynojimycin, an α-glucosidase inhibitor, can penetrate cells rapidly to potently inhibit α-glucosidase in a competitive manner. However, the application of 1-deoxynojimycin is limited by its poor lipophilicity and low bioavailability. Herein, three 1-deoxynojimycin derivatives 4-6 were designed and synthesized by linking 1-deoxynojimycin and chrysin to ameliorate the limitations of 1-deoxynojimycin. Among them, compound 6, a conjugate of 1-deoxynojimycin and chrysin linked by an undecane chain, could better bind to the α-glucosidase catalytic site, thereby exhibiting excellent α-glucosidase inhibitory activity (IC50 = 0.51 ± 0.02 µM). Kinetics analyses revealed that compound 6 inhibited the activity of α-glucosidase in a reversible and mixed competitive manner. Fluorescence quenching and UV-Vis spectra showed that compound 6 changed the conformation of the α-glucosidase via complex formation, which triggered a static fluorescence quenching of the enzyme protein.

8.
Food Chem ; 326: 126904, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32413765

ABSTRACT

In this paper, the interaction of silkworm pupae protein (SPP) with cyanidin-3-O-glucoside (C3G) was studied the protective anthocyanins stability. Characterization experiments suggested that C3G-SPP complexes mainly through hydrophobic interactions, with a decrease in the α-helix content and increases in the ß-sheet and ß-turn contents. Fluorescence results revealed that C3G quenched the intrinsic fluorescence of SPP by static quenching. The highest quenching constant, Kq, was recorded to be1.26 × 1012 M-1s-1 for the SPP preheated at 80 °C. Following the C3G-SPP complexes, the degradation rate constant decreased, and the half-life of C3G was prolonged from 64.81 ± 1.07 to 261.99 ± 13.32 min at 80 °C (p < 0.05). The SPP preheated at 80 °C exhibited the highest binding affinity towards C3G and also effectively increased the thermal and oxidative stability of the C3G. The obtained results suggest that the novel protein proposed in this study could expand the application of anthocyanins as stable, functional food ingredients.


Subject(s)
Anthocyanins/chemistry , Bombyx/chemistry , Glucosides/chemistry , Pupa/chemistry , Animals , Hydrophobic and Hydrophilic Interactions , Spectrometry, Fluorescence
9.
Arch Microbiol ; 201(3): 369-375, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30680410

ABSTRACT

The entomopathogenic mushroom Cordyceps militaris is a storehouse of various medicinal compounds and pharmacological effects. However, the high frequency of strain degeneration during subculture and preservation severely limits the large-scale production of C. militaris. DNA methylation is an important epigenomic modification involved in gene regulation. In this study, we used bisulfite sequencing for DNA methylation profiling of wild-type and mutant C. militaris. The differentially methylated regions (DMRs) of the two types were analyzed using Gene Ontology (GO) clustering and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. DNA methylation levels of the wild-type and mutant-type C. militaris were 0.48% and 0.56%, respectively. Methylation appeared at CHH dinucleotides in 58.62% and 58.20% of all methylated cytosine sites in the wild and mutant types, respectively. In all, 188 DMRs were identified from the wild and mutant types. Most of the DMRs ranged from 200 to 350 bp in length. KEGG pathways of the expression of DMR-related genes, which are involved in pyruvate metabolism, glycerophospholipid metabolism, DNA replication, and N-glycan biosynthesis. This contributes to the knowledge and understanding of the possible mechanisms of C. militaris strain degeneration.


Subject(s)
Cordyceps/genetics , DNA Methylation/genetics , Genome, Fungal/genetics , Base Sequence , Gene Expression Regulation, Fungal/genetics , Gene Ontology , Sequence Analysis, DNA
10.
PLoS One ; 12(10): e0186279, 2017.
Article in English | MEDLINE | ID: mdl-29073171

ABSTRACT

BACKGROUND: The entomopathogenic mushroom Cordyceps militaris is an important medicinal and food resource owing to its various medicinal components and pharmacological effects. However, the high frequency of strain degeneration during subculture seriously restricts the large-scale production of C. militaris, and the mechanism underlying strain degeneration remains unclear. In this study, we artificially cultured C. militaris for six generations and compared changes during fruiting body growth. The transcriptome of six generations of C. militaris strains were sequenced with the Illumine Hiseq4000. RESULTS: The subcultured C. militaris strains degenerated beginning at the third generation, with incomplete fruiting body growth beginning at the fourth generation. Over 9,015 unigenes and 731 new genes were identified. In addition, 35,323 alternative splicing (AS) events were detected in all samples, and more AS events occurred in the second, fourth and sixth generations. Compared with the first generation, the third generation (degenerated strain) included 2,498 differentially expressed genes (DEGs) including 1,729 up-regulated and 769 down-regulated genes. This number was higher than the number of DEGs in the second (1,892 DEGs), fourth (2,006 DEGs), fifth (2,273 DEGs) and sixth (2,188 DEGs) generations. Validation of RNA-seq by qRT-PCR showed that the expression patterns of 51 DEGs were in accordance with the transcriptome data. CONCLUSION: Our results suggest that the mechanism of C. militaris strain degeneration is associated with gene involved in toxin biosynthesis, energy metabolism, and DNA methylation and chromosome remodeling.


Subject(s)
Cordyceps/genetics , Transcriptome , Gene Expression Regulation, Fungal , Genes, Fungal , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...