Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 13388, 2019 09 16.
Article in English | MEDLINE | ID: mdl-31527785

ABSTRACT

This study puts forward a new way to produce montmorillonite immobilized bimetallic nickel-iron nanoparticles by dry in-situ hydrogen reduction method in the non-liquid environment, which effectively inhibits the oxidation of iron and nickel during the synthesis process and improves the reactivity of the material. The degradation of 4-Chlorophenol (4-CP) was investigated to examine the catalytic activity of the material. The morphology and crystal properties of the montmorillonite-templated Fe/Ni bimetallic particles were explored by using scanning electron microscopy, transmission electron microscopy, X-ray diffraction studies, and energy dispersive X-ray spectroscopy analysis. Results suggest that Fe and Ni particles were homogeneously dispersed on the montmorillonite. The optimization of Ni content and reduction temperature over the degradation of 4-CP was also studied. The introduction of Ni intensely improved the degradation of 4-CP and reached over 90% when Ni content was 28.5%. The degradation rate increased significantly with the increase of reduction temperature and showed maximum activity at the reduction tempreature of 800 °C. This study offers a new method to fabricate montmorillonite immobilized Fe/Ni bimetallic nanoparticles in the non-liquid environment and the composites exhibited high degradation activity to chlorinated organic compounds.

SELECTION OF CITATIONS
SEARCH DETAIL
...