Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Eye (Lond) ; 37(12): 2505-2510, 2023 08.
Article in English | MEDLINE | ID: mdl-36522528

ABSTRACT

BACKGROUND: Fundus microvasculature may be visually observed by ophthalmoscope and has been widely used in clinical practice. Due to the limitations of available equipment and technology, most studies only utilized the two-dimensional planar features of the fundus microvasculature. METHODS: This study proposed a novel method for establishing the three-dimensional fundus vascular structure model and generating hemodynamic characteristics based on a single image. Firstly, the fundus vascular are segmented through our proposed network framework. Then, the length and width of vascular segments and the relationship among the adjacent segments are collected to construct the three-dimensional vascular structure model. Finally, the hemodynamic model is generated based on the vascular structure model, and highly correlated hemodynamic features are selected to diagnose the ophthalmic diseases. RESULTS: In fundus vascular segmentation, the proposed network framework obtained 98.63% and 97.52% on Area Under Curve (AUC) and accuracy respectively. In diagnosis, the high correlation features extracted based on the proposed method achieved 95% on accuracy. CONCLUSIONS: This study demonstrated that hemodynamic features filtered by relevance were essential for diagnosing retinal diseases. Additionally, the method proposed also outperformed the existing models on the levels of retina vessel segmentation. In conclusion, the proposed method may represent a novel way to diagnose retinal related diseases, which can analysis two-dimensional fundus pictures by extracting heterogeneous three-dimensional features.


Subject(s)
Algorithms , Retinal Diseases , Humans , Image Processing, Computer-Assisted/methods , Fundus Oculi , Retinal Vessels/diagnostic imaging , Retinal Diseases/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...