Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 402: 130839, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744396

ABSTRACT

The performance of an anaerobic ammonium oxidation (anammox) reactor with the magnetic field of 40 mT was systematically investigated. The total nitrogen removal rate was enhanced by 16% compared with that of the control group. The enhancing mechanism was elucidated from the improved mass transfer efficiency, the complicated symbiotic interspecific relationship and the improved levels of functional genes. The magnetic field promoted formation of the loose anammox granular sludge and the homogeneous and well-connected porous structure to enhance the mass transfer. Consequently, Candidatus Brocadia predominated in the sludge with an increase in abundance of 13%. Network analysis showed that the positive interactions between Candidatus Brocadia and heterotrophic bacteria were strengthened, which established a more complicated stable microbial community. Moreover, the magnetic field increased the levels of hdh by 26% and hzs by 35% to promote the nitrogen metabolic process. These results provided novel insights into the magnetic field-enhanced anammox process.


Subject(s)
Ammonium Compounds , Bioreactors , Magnetic Fields , Nitrogen , Oxidation-Reduction , Sewage , Anaerobiosis , Sewage/microbiology , Ammonium Compounds/metabolism , Nitrogen/metabolism , Bioreactors/microbiology , Bacteria/metabolism
2.
Chemosphere ; 355: 141774, 2024 May.
Article in English | MEDLINE | ID: mdl-38522670

ABSTRACT

The enrichment of anammox bacteria is a key issue in the application of anammox processes. A new type of reactor - anaerobic baffle biofilm reactor (ABBR) developed from anaerobic baffle reactor (ABR) was filled with columnar packings and established for effective enrichment of anammox bacteria. The flow field analysis showed that, compared with ABR, ABBR narrowed the dead zone so as to improve the substrate transferring performances. Two ABBRs with different types of columnar packings (Packings 1 and Packings 2) were constructed to culture anammox biofilms. Packings 1 consisted of the single-form honeycomb carriers while Packings 2 was modular composite packings consisting of non-woven fabric and honeycomb carriers. The effects of different types of columnar packings on microbial community and nitrogen removal were studied. The ABBR filled with Packings 2 had a higher retention rate of biomass than the ABBR filled with Packings 1, making the anammox start-up period be shortened by 21.28%. The enrichment of anammox bacteria were achieved and the dominant anammox bacteria were Candidatus Brocadia in both R1 and R2. However, there were four genera of anammox bacteria in R2 and one genus of anammox bacteria in R1, and the cell density of anammox bacteria in R2 was 95% higher than that in R1. R2 has the advantage of maintaining excellent and stable nitrogen removal performance at high nitrogen loading rate. The results revealed that the packings composed of two types of carriers may have a better enrichment effect on anammox bacteria. This study is of great significance for the rapid enrichment of anammox bacteria and the technical promotion of anammox process.


Subject(s)
Bioreactors , Microbiota , Anaerobiosis , Bioreactors/microbiology , Sewage/microbiology , Anaerobic Ammonia Oxidation , Bacteria/metabolism , Biofilms , Nitrogen/metabolism , Oxidation-Reduction , Denitrification
3.
Environ Sci Pollut Res Int ; 30(10): 27730-27742, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36383316

ABSTRACT

Membrane fouling has been a key factor limiting the applications of membrane bioreactor (MBR). In this study, a novel umbrella-shape membrane module was applied to construct two MBRs for two-stage partial nitrification-anaerobic ammonia oxidation (PN-ANAMMOX) process. After 55 days operation, the ANAMMOX process was started and the PN process was well controlled. Then, the ANAMMOX and PN process were successfully coupled to run the PN-ANAMMOX process. On 103 days, the best nitrogen removing effect was achieved with the maximum nitrogen loading rate (NLR) of 0.4 kg N·(m3·d)-1 and the corresponding maximum total nitrogen removal rate (TNRR) of 75.23%. The umbrella-shape membrane module in both reactors only needed to be cleaned once during the operation for 105 days, indicating that the membrane module had better resistance to membrane fouling. The functional bacteria were cultivated in suspension state; moreover, the cell densities of ammonia oxidizing bacteria (AOB) and ANAMMOX bacteria (AnAOB) reached 58.32 × 1012 copies/g sludge and 28.39 × 1012 copies/g sludge. Their abundances reached 73.25% and 57.80% of the total bacteria, respectively. MBR improved by umbrella-shape membrane module could realize the rapid start-up of ANAMMOX process, effective control of PN process, and stable operation of PN-ANAMMOX process. This study provided a novel approach to control membrane fouling by optimizing the membrane module shape and widened applications of MBRs in PN-ANAMMOX process.


Subject(s)
Anaerobic Ammonia Oxidation , Nitrification , Sewage , Bioreactors/microbiology , Bacteria/metabolism , Nitrogen/metabolism , Oxidation-Reduction , Denitrification
4.
Chemosphere ; 275: 130075, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33667765

ABSTRACT

The feasibility of one-step start-up of CANON process in a FBR by inoculating mixture of partial nitrification and Anammox sludge as well as its subsequent operation performances were investigated in the present study. The FBR was operated for around 3 months. The CANON process was quickly started up within 21 days. The max total nitrogen (TN) removal rate reached 183.61 g m-3 d-1 with the TN removal efficiency of 91.81% on day 95. The CANON process exhibited a good capability for resistance to loading shock and restoration from the unstable state. The mature CANON biofilms displayed a morphology of aggregates and had porous and microporous structure. The structural characteristics of the biofilms were conducive to improve the transferring of substrates and products. AOB and Anammox bacteria absolutely predominated in the mature biofilms and furthermore established a balanced interaction relationship. The microbial community structure contributed to the relatively stable operation performances.


Subject(s)
Nitrification , Sewage , Biofilms , Bioreactors , Nitrogen , Oxidation-Reduction
5.
Ultrason Sonochem ; 73: 105468, 2021 May.
Article in English | MEDLINE | ID: mdl-33517095

ABSTRACT

A lab-scale ultrasound enhancing Anammox reactor (ABRU) was established and irradiated once a week by ultrasound with the optimal parameter (frequency of 25.0 kHz, intensity of 1.00 W cm-2 and exposure time of 36.0 s) obtained by response surface methodology (RSM). ABRU and the controlled Anammox reactor (ABRC) without ultrasonic treatment were operated in parallel. The start-up time of Anammox process in ABRU (59 d) was shorter than that in ABRC (69 d). At the end of the nitrogen load-enhancing period, NLR (0.500 kg N m-3 d-1) and NRR (0.430 kg N m-3 d-1) in ABRU were both higher than NLR (0.400 kg N m-3 d-1) and NRR (0.333 kg N m-3 d-1) in ABRC. The results of RTQ-PCR demonstrated that the specific low-intensity ultrasound irradiation improved the enrichment levels of AnAOB in mature sludge. SEM images and the observation of the macroscopic morphology of mature sludge showed that the ultrasound irradiation strengthened the formation of Anammox granular sludge, thereby improved the interception capacity and impact load resistance of the reactor, and enhanced the nitrogen removal performance in ABRU. The ultrasonic enhanced Anammox reactor based on an ABR with the optimal parameters can promote the rapid start-up and efficient and stable operation of the Anammox process at normal temperature (around 25.0 °C).

SELECTION OF CITATIONS
SEARCH DETAIL
...