Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Differ ; 29(11): 2316-2331, 2022 11.
Article in English | MEDLINE | ID: mdl-35614132

ABSTRACT

Metabolic switch is critical for cell fate determination through metabolic functions, epigenetic modifications, and gene expression. However, the mechanisms underlying these alterations and their functional roles remain unclear. Here, we show that Plin2-mediated moderate lipid hydrolysis is critical for pluripotency of embryonic stem cells (ESCs). Upon exit from pluripotency, lipid droplet (LD)-associated protein Plin2 is recognized by Hsc70 and degraded via chaperone-mediated autophagy to facilitate LD mobilization. Enhancing lipid hydrolysis by Plin2 knockout promotes pluripotency exit, which is recovered by ATGL inhibition. Mechanistically, excessive lipid hydrolysis induces a dramatic lipidomic remodeling characterized by decreased cardiolipin and phosphatidylethanolamine, which triggers defects in mitochondrial cristae and fatty acid oxidation, resulting in reduced acetyl-CoA and histone acetylation. Our results reveal how LD mobilization is regulated and its critical role in ESC pluripotency, and indicate the mechanism linking LD homeostasis to mitochondrial remodeling and epigenetic regulation, which might shed light on development and diseases.


Subject(s)
Histones , Lipid Droplets , Lipid Droplets/metabolism , Acetylation , Histones/metabolism , Epigenesis, Genetic , Lipidomics , Perilipin-2/genetics , Perilipin-2/metabolism , Lipids
2.
Cell Death Differ ; 29(5): 1042-1054, 2022 05.
Article in English | MEDLINE | ID: mdl-34815549

ABSTRACT

Somatic cell reprogramming is an ideal model for studying epigenetic regulation as it undergoes dramatic chromatin remodeling. However, a role for phosphorylation signaling in chromatin protein modifications for reprogramming remains unclear. Here, we identified mitogen-activated protein kinase kinase 6 (Mkk6) as a chromatin relaxer and found that it could significantly enhance reprogramming. The function of Mkk6 in heterochromatin loosening and reprogramming requires its kinase activity but does not depend on its best-known target, P38. We identified Gatad2b as a novel target of Mkk6 phosphorylation that acts downstream to elevate histone acetylation levels and loosen heterochromatin. As a result, Mkk6 over-expression facilitates binding of Sox2 and Klf4 to their targets and promotes pluripotency gene expression during reprogramming. Our studies not only reveal an Mkk phosphorylation mediated modulation of chromatin status in reprogramming, but also provide new rationales to further investigate and improve the cell fate determination processes.


Subject(s)
Chromatin , Heterochromatin , Cellular Reprogramming , Epigenesis, Genetic , MAP Kinase Kinase 6/genetics , MAP Kinase Kinase 6/metabolism , Phosphorylation
5.
Nat Metab ; 2(9): 882-892, 2020 09.
Article in English | MEDLINE | ID: mdl-32839595

ABSTRACT

Somatic cell reprogramming provides insight into basic principles of cell fate determination, which remain poorly understood. Here we show that the transcription factor Glis1 induces multi-level epigenetic and metabolic remodelling in stem cells that facilitates the induction of pluripotency. We find that Glis1 enables reprogramming of senescent cells into pluripotent cells and improves genome stability. During early phases of reprogramming, Glis1 directly binds to and opens chromatin at glycolytic genes, whereas it closes chromatin at somatic genes to upregulate glycolysis. Subsequently, higher glycolytic flux enhances cellular acetyl-CoA and lactate levels, thereby enhancing acetylation (H3K27Ac) and lactylation (H3K18la) at so-called 'second-wave' and pluripotency gene loci, opening them up to facilitate cellular reprogramming. Our work highlights Glis1 as a powerful reprogramming factor, and reveals an epigenome-metabolome-epigenome signalling cascade that involves the glycolysis-driven coordination of histone acetylation and lactylation in the context of cell fate determination.


Subject(s)
DNA-Binding Proteins/metabolism , Epigenome , Induced Pluripotent Stem Cells , Metabolome , Signal Transduction/genetics , Signal Transduction/physiology , Transcription Factors/metabolism , Acetyl Coenzyme A/metabolism , Animals , Cellular Reprogramming , Cellular Senescence , Chromatin Immunoprecipitation , Glucose/metabolism , Lactic Acid/metabolism , Male , Mice , Plasmids/genetics
6.
EMBO J ; 39(1): e99165, 2020 01 02.
Article in English | MEDLINE | ID: mdl-31571238

ABSTRACT

The success of Yamanaka factor reprogramming of somatic cells into induced pluripotent stem cells suggests that some factor(s) must remodel the nuclei from a condensed state to a relaxed state. How factor-dependent chromatin opening occurs remains unclear. Using FRAP and ATAC-seq, we found that Oct4 acts as a pioneer factor that loosens heterochromatin and facilitates the binding of Klf4 and the expression of epithelial genes in early reprogramming, leading to enhanced mesenchymal-to-epithelial transition. A mutation in the Oct4 linker, L80A, which shows impaired interaction with the BAF complex component Brg1, is inactive in heterochromatin loosening. Oct4-L80A also blocks the binding of Klf4 and retards MET. Finally, vitamin C or Gadd45a could rescue the reprogramming deficiency of Oct4-L80A by enhancing chromatin opening and Klf4 binding. These studies reveal a cooperation between Oct4 and Klf4 at the chromatin level that facilitates MET at the cellular level and shed light into the research of multiple factors in cell fate determination.


Subject(s)
Cellular Reprogramming , Epithelial Cells/metabolism , Heterochromatin/metabolism , Histones/metabolism , Induced Pluripotent Stem Cells/cytology , Kruppel-Like Transcription Factors/metabolism , Octamer Transcription Factor-3/metabolism , Animals , Antioxidants/pharmacology , Ascorbic Acid/pharmacology , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Differentiation , Cells, Cultured , DNA Helicases/genetics , DNA Helicases/metabolism , Epithelial Cells/cytology , Epithelial-Mesenchymal Transition , Fibroblasts/cytology , Fibroblasts/metabolism , Heterochromatin/genetics , Histones/genetics , Humans , Induced Pluripotent Stem Cells/metabolism , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/genetics , Mice , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Octamer Transcription Factor-3/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
7.
Sci Adv ; 5(11): eaax7525, 2019 11.
Article in English | MEDLINE | ID: mdl-31807705

ABSTRACT

Metabolic reprogramming has emerged as a key regulator of cell fate decisions. Roles of glucose and amino acid metabolism have been extensively documented, whereas lipid metabolism in pluripotency remains largely unexplored. Using a high-coverage lipidomics approach, we reveal dynamic changes in phospholipids occurring during reprogramming and show that the CDP-ethanolamine (CDP-Etn) pathway for phosphatidylethanolamine (PE) synthesis is required at the early stage of reprogramming. Mechanistically, the CDP-Etn pathway inhibits NF-κB signaling and mesenchymal genes in a Pebp1-dependent manner, without affecting autophagy, resulting in accelerated mesenchymal-to-epithelial transition (MET) and enhanced reprogramming. Furthermore, PE binding to Pebp1 enhances the interaction of Pebp1 with IKKα/ß and reduces the phosphorylation of IKKα/ß. The CDP-Etn-Pebp1 axis is associated with EMT/MET in hepatocyte differentiation, indicating that Etn/PE is a broad-spectrum MET/EMT-regulating metabolite. Collectively, our study reveals an unforeseen connection between phospholipids, cell migration, and pluripotency and highlights the importance of phospholipids in cell fate transitions.


Subject(s)
Cell Differentiation , Epithelial-Mesenchymal Transition , Hepatocytes/metabolism , Phosphatidylethanolamines/metabolism , Pluripotent Stem Cells/metabolism , Signal Transduction , Animals , Cell Line , Cell Movement , Cytidine Diphosphate/analogs & derivatives , Cytidine Diphosphate/metabolism , Ethanolamines/metabolism , Hepatocytes/cytology , I-kappa B Kinase/metabolism , Mice , NF-kappa B/metabolism , Phosphatidylethanolamine Binding Protein/metabolism , Pluripotent Stem Cells/cytology
9.
Cell Metab ; 28(6): 935-945.e5, 2018 12 04.
Article in English | MEDLINE | ID: mdl-30174306

ABSTRACT

Reprogramming of somatic cells to induced pluripotent stem cells reconfigures chromatin modifications. Whether and how this process is regulated by signals originating in the mitochondria remain unknown. Here we show that the mitochondrial permeability transition pore (mPTP), a key regulator of mitochondrial homeostasis, undergoes short-term opening during the early phase of reprogramming and that this transient activation enhances reprogramming. In mouse embryonic fibroblasts, greater mPTP opening correlates with higher reprogramming efficiency. The reprogramming-promoting function of mPTP opening is mediated by plant homeodomain finger protein 8 (PHF8) demethylation of H3K9me2 and H3K27me3, leading to reduction in their occupancies at the promoter regions of pluripotency genes. mPTP opening increases PHF8 protein levels downstream of mitochondrial reactive oxygen species production and miR-101c and simultaneously elevates levels of PHF8's cofactor, α-ketoglutarate. Our findings represent a novel mitochondria-to-nucleus pathway in cell fate determination by mPTP-mediated epigenetic regulation.


Subject(s)
Cellular Reprogramming , Fibroblasts/metabolism , Histone Demethylases/metabolism , Histones/metabolism , Lysine/metabolism , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/physiology , Mitochondrial Membranes/metabolism , Mouse Embryonic Stem Cells/metabolism , Transcription Factors/metabolism , Animals , HEK293 Cells , Humans , Ketoglutaric Acids/metabolism , Methylation , Mice , Mice, Inbred C57BL , MicroRNAs/metabolism , Mitochondrial Permeability Transition Pore , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...