Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Biomacromolecules ; 24(11): 5353-5363, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37871289

ABSTRACT

The silencing of disease-causing genes with small interfering RNA (siRNA) offers a particularly effective therapeutic strategy for different disorders; however, its clinical efficacy relies on the development of nontoxic and tissue-specific delivery vehicles. Herein, we report that bioresponsive chimaeric polymersomes (BCP) with short poly(ethylenimine) as inner shell mediate highly efficacious, sustained, and liver-specific siRNA transfection in vivo. BCP exhibited remarkable encapsulation efficiencies of siRNA (95-100%) at siRNA-feeding contents of 15-25 wt %, to afford stable, small-sized (55-64 nm), and neutral-charged BCP-siRNA. siApoB-Loaded BCP (BCP-siApoB) outperformed lipofectamine counterparts and silenced 93% of ApoB mRNA in HepG2 cells at 50 nM siApoB without inducing cytotoxicity. Intriguingly, the in vivo studies using wild-type C57BL/6 mice revealed that BCP-siApoB preferentially accumulated in the liver, and a single dose of 4.5 mg/kg achieved over 90% downregulation of ApoB mRNA for at least 10 days. The systemic administration of BCP-siApoB at 4.5 mg/kg every 2 weeks or 1.5 mg/kg weekly in diet-induced obese mice could also achieve up to 80% silencing of ApoB mRNA. The liver specificity and silencing efficacy of BCP-siApoB could further be improved by decorating it with the trivalent N-acetylgalactosamine (TriGalNAc) ligand. These bioresponsive and liver-specific chimaeric polymersomes provide an enabling technology for siRNA therapy of various liver-related diseases.


Subject(s)
Apolipoproteins B , Liver , Animals , Mice , RNA, Small Interfering/genetics , Mice, Inbred C57BL , Apolipoproteins B/genetics , Transfection , RNA, Messenger
2.
Microbiol Spectr ; 11(1): e0282822, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36688678

ABSTRACT

Chromosome evolution drives species evolution, speciation, and adaptive radiation. Accurate genome assembly is crucial to understanding chromosome evolution of species, such as dikaryotic fungi. Rust fungi (Pucciniales) in dikaryons represent the largest group of plant pathogens, but the evolutionary process of adaptive radiation in Pucciniales remains poorly understood. Here, we report a gapless genome for the wheat leaf rust fungus Puccinia triticina determined using PacBio high-fidelity (HiFi) sequencing. This gapless assembly contains two sets of chromosomes, showing that one contig represents one chromosome. Comparisons of homologous chromosomes between the phased haplotypes revealed that highly frequent small-scale sequence divergence shapes haplotypic variation. Genome analyses of Puccinia triticina along with other rusts revealed that recent transposable element bursts and extensive segmental gene duplications synergistically highlight the evolution of chromosome structures. Comparative analysis of chromosomes indicated that frequent chromosomal rearrangements may act as a major contributor to rapid radiation of Pucciniales. This study presents the first gapless, phased assembly for a dikaryotic rust fungus and provides insights into adaptive evolution and species radiation in Pucciniales. IMPORTANCE Rust fungi (Pucciniales) are the largest group of plant pathogens. Adaptive radiation is a predominant feature in Pucciniales evolution. Chromosome evolution plays an important role in adaptive evolution. Accurate chromosome-scale assembly is required to understand the role of chromosome evolution in Pucciniales. We took advantage of HiFi sequencing to construct a gapless, phased genome for Puccinia triticina. Further analyses revealed that the evolution of chromosome structures in rust lineage is shaped by the combination of transposable element bursts and segmental gene duplications. Chromosome comparisons of Puccinia triticina and other rusts suggested that frequent chromosomal arrangements may make remarkable contributions to high species diversity of rust fungi. Our results present the first gapless genome for Pucciniales and shed light on the feature of chromosome evolution in Pucciniales.


Subject(s)
Basidiomycota , DNA Transposable Elements , Basidiomycota/genetics , Puccinia/genetics , Chromosomes , Plant Diseases/microbiology
3.
Cancer Cell Int ; 22(1): 361, 2022 Nov 19.
Article in English | MEDLINE | ID: mdl-36403055

ABSTRACT

Gynecological cancer is one of the most severe diseases that threaten the lives and health of women worldwide. Its incidence rate increases with each passing year and becomes more prevalent among young people. The prognosis of gynecological cancer remains poor despite significant advances in surgical removal and systemic chemotherapy. Several chemokines play a role in the progression of gynecologic cancers. CCL2 (CC-chemokine ligand 2), also termed MCP-1 (monocyte chemotactic protein 1), plays a significant physiological role in monocyte cell migration and the inflammatory response. Recent studies have demonstrated that CCL2 plays a pro-tumorigenic function in the tumor microenvironment. According to previous studies, CCL2 plays a significant role in the occurrence and development of gynecological cancers. Furthermore, recent studies noted that CCL2 could be a potential diagnostic biomarker and prognostic predictor. The purpose of this paper is to review the role of CCL2 in the occurrence and development of gynecological cancers and to discuss the potential therapeutic strategy of CCL2 for gynecological cancers, with a primary focus on breast cancer, ovarian cancer, cervical cancer, and endometrial cancer.

4.
Acta Pharm Sin B ; 12(5): 2252-2267, 2022 May.
Article in English | MEDLINE | ID: mdl-35646530

ABSTRACT

Aristolochic acids (AAs) have long been considered as a potent carcinogen due to its nephrotoxicity. Aristolochic acid I (AAI) reacts with DNA to form covalent aristolactam (AL)-DNA adducts, leading to subsequent A to T transversion mutation, commonly referred as AA mutational signature. Previous research inferred that AAs were widely implicated in liver cancer throughout Asia. In this study, we explored whether AAs exposure was the main cause of liver cancer in the context of HBV infection in mainland China. Totally 1256 liver cancer samples were randomly retrieved from 3 medical centers and a refined bioanalytical method was used to detect AAI-DNA adducts. 5.10% of these samples could be identified as AAI positive exposure. Whole genome sequencing suggested 8.41% of 107 liver cancer patients exhibited the dominant AA mutational signature, indicating a relatively low overall AAI exposure rate. In animal models, long-term administration of AAI barely increased liver tumorigenesis in adult mice, opposite from its tumor-inducing role when subjected to infant mice. Furthermore, AAI induced dose-dependent accumulation of AA-DNA adduct in target organs in adult mice, with the most detected in kidney instead of liver. Taken together, our data indicate that AA exposure was not the major threat of liver cancer in adulthood.

5.
Protein J ; 41(2): 337-344, 2022 04.
Article in English | MEDLINE | ID: mdl-35524873

ABSTRACT

C-C motif chemokine ligand 5 (CCL5) is crucial in the tumor microenvironment. It has been previously reported to act as a key role in tumor invasion and metastasis. However, the function of exogenous CCL5 in ovarian cancer has not been well-characterized. The present study attempted to express and purify recombinant CCL5 protein and investigate the exogenous CCL5 in ovarian cancer cell proliferation. The human CCL5 was amplified and inserted into the pET-30a vectors for prokaryotic expression in Escherichia coli BL21. Soluble His-CCL5 was successfully expressed with 0.1 mmol/L of isopropyl-ß-D-1-tiogalactopiranoside at 25 ℃ and purified by affinity chromatography. Additionally, methyl thiazolyl tetrazolium (MTT) assay demonstrated that CCL5 promotes ovarian cancer cell proliferation; increases the phosphorylation levels of extracellular-signal-regulated kinase and mitogen-activated protein kinase/ERK kinase, and increases the mRNA levels of Jun, NF-κB2, Nras, Relb, and Traf2. Furthermore, treatment with the MEK inhibitor reduced the Jun, NF-κB2, and Traf2 mRNA levels, indicating that exogenous CCL5 increased ovarian cancer cell proliferation, through MEK/ERK pathway activation, and Jun, NF-κB2, and Traf2 expression. The present study provided primary data for further studies to discover more CCL5 functions in ovarian cancer.


Subject(s)
NF-kappa B p52 Subunit , Ovarian Neoplasms , Cell Line, Tumor , Chemokine CCL5/genetics , Chemokine CCL5/metabolism , Chemokine CCL5/pharmacology , Female , Humans , Mitogen-Activated Protein Kinase Kinases/metabolism , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , RNA, Messenger/metabolism , TNF Receptor-Associated Factor 2/metabolism , Tumor Microenvironment
6.
Plant Physiol Biochem ; 168: 211-220, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34649024

ABSTRACT

Many studies have revealed that SPX (SYG1/Pho81/XPR1) family genes play a key role in signal transduction related to phosphorus (P) deficiency in plants. Here, we identified 33 SPX gene family members in maize through genome-wide analysis and classified them into 4 subfamilies according to SPX structural characteristics (SPX, SPX-MFS, SPX-EXS and SPX-RING). The promoter regions of ZmSPXs are rich in biotic/abiotic-related stress elements. The quantitative real-time PCR analysis of 33 ZmSPXs revealed that all members except for ZmSPX3 of the SPX subfamily were significantly induced under P-deficient conditions, especially ZmSPX4.1 and ZmSPX4.2, which showed strong responses to low P stress and exhibited remarkably different expression patterns in low Pi sensitive and insensitive cultivars of maize. These results suggested that the SPX subfamily might play pivotal roles in P stress sensing and response. Experimental observations of subcellular localization in maize protoplasts indicated the following results, implying multiple roles in cell metabolism: ZmSPX2, ZmSPX5 and ZmSPX6 localized in the nucleus; ZmSPX1 and ZmSPX3 localized in the nucleus and cytoplasm; and ZmSPX4.2 localized in the chloroplast. A Y2H assay suggested that ZmPHR1 could interact with ZmSPX3, ZmSPX4.2, ZmSPX5, and ZmSPX6, indicating the involvement of these proteins in the P stress response in a ZmPHR1-mediated manner.


Subject(s)
Phosphates , Zea mays , Gene Expression Profiling , Gene Expression Regulation, Plant , Phosphates/metabolism , Phosphorus/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Zea mays/genetics , Zea mays/metabolism
7.
Plant Dis ; 2021 May 18.
Article in English | MEDLINE | ID: mdl-34003036

ABSTRACT

Tobacco (Nicotiana tabacum L.) is an important cash crop in China, with an estimated production of 2.2 million tons every year (Berbec and Matyka, 2020). In June 2020, a root rot disease was observed on tobacco (cv. Zhongyan 100) in four surveyed counties (Mianchi, Lushi, Duguan and Lingbao) in Sanmenxia. Diseased plants exhibited leaf chlorosis and purplish to brown vascular discoloration of stem, taproot and lateral roots. The disease incidence ranged from 15% to 40% in 11 surveyed fields, 36.7 ha in total. Twenty five diseased tissues were surface sterilized in 75% ethanol and placed on potato dextrose agar (PDA) medium. Fifteen single-spore isolates were obtained from 25 diseased tissue samples. All cultures growing on PDA had white colonies with abundant aerial mycelia initially, turning into yellow to orange in the center and produced red pigmentation after seven days of growth. The 7-day-old cultures grown on carnation leaf agar (CLA) produced macroconidia that were curved with 3-5 septa, had wide central cells, slightly pointy apex, and measured 17.0-45.9 µm long×3.0-4.6 µm wide (n=50). The microconidia formed on CLA were slightly curved, ovoid with zero to two septa, measuring 5.4-15.5 µm long×2.0-3.2 µm wide (n=50). Spherical chlamydospores (7.58-13.52 µm; n=50) were terminal or intercalary, single or in chains. Such characteristics were typical of Fuarium brachygibbosum (Tirado-Ramírez et al. 2018). DNA from one representative single-spore isolate (MC1) was extracted, and the translation elongation factor 1-alpha (EF1-α), RNA polymerase I largest subunit (RPB1) and second largest subunit (RPB2) genes were amplified with primers EF1/EF2, F5/G2R and RPB2F/R respectively (O'Donnell et al. 1998, 2010), and sequenced. Sequences were submitted to GenBank under accession numbers MT947796 (EF1-α), MW679536 (RPB1) and MW430664 (RPB2). The consensus sequences showed 99.70%, 99.94% and 100% identity to the sequences of F. brachygibbosum strain NRRL 34033 (accession no. GQ505418.1, HM347172.1 and GQ505482.1, Wang et al 2021). Morphological and molecular results confirmed this species as F. brachygibbosum (Al-Mahmooli, et al., 2013, Rentería -Martínez, et al., 2018). Pathogenicity tests were performed on tobacco seedlings grown on autoclaved tobacco specific substrate (Tobacco specific matrix, Ainong Biotechnology Co. Ltd, China). Healthy six-leaf stage tobacco seedlings (n=30; Zhongyan 100) were inoculated by placing 7-days old wheat seed (15 seeds per plant) infested with MC1 around the root. Thirty seedlings inoculated with sterile wheat seeds served as controls. All the plants were maintained in a growth chamber at 25±0.5℃ and 70% relative humidity. The assay was conducted three times. Typical symptoms of foliage chlorosis and root browning were observed 7-14 days after inoculation. The pathogen was reisolated from the necrotic tissue from all inoculated seedlings and was identified by sequencing partial EF1-α and RPB2 genes. Control plants remained asymptomatic and no pathogen was recovered from the control plants. Fusarium brachygibbosum is known as a pathogen of grains and cash crops in China (Shan, et al., 2017, Xia, et al., 2018). To our knowledge, this is the first report of F. brachygibbosum causing root rot on tobacco. We believe that our results will help to better understand rhizome fungal diseases affecting tobacco production in China. Acknowledgements: Funding was provided by the Science and Technology Project of Henan Provincial Tobacco Company (2020410000270012), Independent Innovation Project of Hennan Academy of Agricultural Sciences (2020ZC18) and Research and Development project of Henan Academy of Agricultural Sciences (2020CY010). References: Al-Mahmooli, I. H., et al. 2013. Plant Dis. 97:687; https://doi.org/10.1094/PDIS-09-12-0828-PDN Berbec A. K. and Matyka M. 2020. Agric. 10(11), 551; https://doi.org/10.3390/agriculture10110551 O'Donnell, K., et al. 1998. P. Natl. Acad. Sci. USA. 95(5):2044-2049; https://doi.org/10.1073/pnas.95.5.2044 O'Donnell, K., et al. 2010. J. Clin. Microbiol. 48(10)3708-3718; https://doi.org/10.1128/JCM.00989-10 Rentería -Martínez M.E., et al. 2018. Mex. J. of Phytopathol. 36(2):1-23; https://doi.org/10.18781/R.MEX.FIT.1710-1 Shan, L. Y., et al. 2017. Plant Dis. 101:837; https://doi.org/10.1094/PDIS-10-16-1465-PDN Tirado-Ramírez, M. A., et al. 2018. Plant Dis. 103; https://doi.org/10.1094/PDIS-04-18-0710-PDN Wang, S., et al. 2021. Plant Dis. 2021 Jan 6. doi: 10.1094/PDIS-05-20-0941-PDN. Epub ahead of print. PMID: 33406862. Xia, B., et al. 2018. Plant Dis. 102(11):2372; https://doi.org/10.1094/PDIS-12-17-1939-PDN The author(s) declare no conflict of interest.

8.
Acta Pharmacol Sin ; 42(12): 2094-2105, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33686245

ABSTRACT

Aristolochic acid I (AAI) is a well-known nephrotoxic carcinogen, which is currently reported to be also associated with hepatocellular carcinoma (HCC). Whether AAI is a direct hepatocarcinogen remains controversial. In this study we investigated the association between AAI exposure and HCC in adult rats using a sensitive rat liver bioassay with several cofactors. Formation of glutathione S-transferase placental form-positive (GST-P+) foci was used as the marker for preneoplastic lesions/clonal expansion. We first conducted a medium-term (8 weeks) study to investigate whether AAI had any tumor-initiating or -promoting activity. Then a long-term (52 weeks) study was conducted to determine whether AAI can directly induce HCC. We showed that oral administration of single dose of AAI (20, 50, or 100 mg/kg) in combination with partial hepatectomy (PH) to stimulate liver proliferation did not induce typical GST-P+ foci in liver. In the 8-week study, only high dose of AAI (10 mg · kg-1 · d-1, 5 days a week for 6 weeks) in combination with PH significantly increased the number and area of GST-P+ foci initiated by diethylnitrosamine (DEN) in liver. Similarly, only high dose of AAI (10 mg· kg-1· d-1, 5 days a week for 52 weeks) in combination with PH significantly increased the number and area of hepatic GST-P+ foci in the 52-week study. No any nodules or HCC were observed in liver of any AAI-treated groups. In contrast, long-term administration of AAI (0.1, 1, 10 mg· kg-1· d-1) time- and dose-dependently caused death due to the occurrence of cancers in the forestomach, intestine, and/or kidney. Besides, AAI-DNA adducts accumulated in the forestomach, kidney, and liver in a time- and dose-dependent manner. Taken together, AAI promotes clonal expansion only in the high-dose group but did not induce any nodules or HCC in liver of adult rats till their deaths caused by cancers developed in the forestomach, intestine, and/or kidney. Findings from our animal studies will pave the way for further large-scale epidemiological investigation of the associations between AA and HCC.


Subject(s)
Aristolochic Acids/toxicity , Carcinogens/toxicity , Carcinoma, Hepatocellular/etiology , Hepatocytes/metabolism , Liver Neoplasms/etiology , Mutagens/toxicity , Animals , Carcinogenesis/drug effects , Cell Proliferation/drug effects , DNA Adducts/drug effects , Glutathione S-Transferase pi/metabolism , Intestinal Neoplasms/chemically induced , Intestines/pathology , Kidney/pathology , Kidney Neoplasms/chemically induced , Liver/metabolism , Liver/pathology , Male , Rats, Sprague-Dawley , Stomach/pathology , Stomach Neoplasms/chemically induced
9.
Plant Pathol J ; 35(2): 172-177, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31007647

ABSTRACT

A duplex PCR method was developed for simultaneous detection and identification of tobacco root rot pathogens Phytophthora nicotianae and Thielaviopsis basicola. The specific primers for P. nicotianae were developed based on its internal transcribed spacer (ITS) regions of ribosomal gene, ras gene and hgd gene, while the specific primers for T. basicola were designed based on its ITS regions and ß-tubulin gene. The specificity of the primers was determined using isolates of P. nicotianae, T. basicola and control samples. The results showed that the target pathogens could be detected from diseased tobacco plants by a combination of the specific primers. The sensitivity limitation was 100 fg/µl of pure genomic DNA of the pathogens. This new assay can be applied to screen out target pathogens rapidly and reliably in one PCR and will be an important tool for the identification and precise early prediction of these two destructive diseases of tobacco.

10.
Acta Pharmacol Sin ; 39(12): 1865-1873, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30061734

ABSTRACT

Cholestasis is a common feature of liver injury, which manifests as bile acid excretion and/or enterohepatic circulation disorders. However, very few effective therapies exist for cholestasis. Recently, 18ß-Glycyrrhetinic acid (18b-GA), a major metabolic component of glycyrrhizin, which is the main ingredient of licorice, was reported to protect against alpha-naphthylisothiocyanate (ANIT)-induced cholestasis. However, its protective mechanism remains unclear. We hypothesized that 18b-GA may stimulate the signaling pathway of bile acid (BA) transportation in hepatocytes, resulting its hepatoprotective effect. According to the results, 18b-GA markedly attenuated ANIT-induced liver injury as indicated the hepatic plasma chemistry index and histopathology examination. In addition, the expression levels of nuclear factors, including Sirt1, FXR and Nrf2, and their target efflux transporters in the liver, which mainly mediate bile acid homeostasis in hepatocytes, significantly increased. Furthermore, we first revealed that 18b-GA treatment significantly activated FXR, and which can be significantly reduced by EX-527 (a potent and selective Sirt1 inhibitor), indicating that 18b-GA activates FXR through Sirt1. Taken together, 18b-GA confers hepatoprotection against ANIT-induced cholestasis by activating FXR through Sirt1, which promotes gene expression of the efflux transporter, and consequently attenuates dysregulation of bile acid homeostasis in hepatocyte compartments.


Subject(s)
Cholestasis/prevention & control , Glycyrrhetinic Acid/analogs & derivatives , Protective Agents/therapeutic use , Receptors, Cytoplasmic and Nuclear/metabolism , Signal Transduction/drug effects , Sirtuin 1/metabolism , 1-Naphthylisothiocyanate , Animals , Cholestasis/chemically induced , Glycyrrhetinic Acid/therapeutic use , Male , NF-E2-Related Factor 2/metabolism , Rats, Sprague-Dawley
11.
Open Biol ; 8(1)2018 01.
Article in English | MEDLINE | ID: mdl-29298909

ABSTRACT

Molecular and genomic studies have shown the presence of a large number of SPX gene family members in plants, some of which have been proved to act in P signalling and homeostasis. In this study, the molecular and evolutionary characteristics of the SPX gene family in plants were comprehensively analysed, and the mechanisms underlying the function of SPX genes in P signalling and homeostasis in the model plant species Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), and in important crops, including wheat (Triticum aestivum), soya beans (Glycine max) and rapeseed (Brassica napus), were described. Emerging findings on the involvement of SPX genes in other important processes (i.e. disease resistance, iron deficiency response, low oxygen response and phytochrome-mediated light signalling) were also highlighted. The available data suggest that SPX genes are important regulators in the P signalling network, and may be valuable targets for enhancing crop tolerance to low P stress. Further studies on SPX proteins should include more diverse members, which may reveal SPX proteins as important regulatory hubs for multiple processes including P signalling and homeostasis in plants.


Subject(s)
Evolution, Molecular , Phosphorus/metabolism , Plant Proteins/genetics , Stress, Physiological , Crops, Agricultural/genetics , Phosphorus/deficiency , Plant Proteins/chemistry , Plant Proteins/metabolism
12.
Open Biol ; 7(5)2017 05.
Article in English | MEDLINE | ID: mdl-28469008

ABSTRACT

Plants can be infected by a variety of pathogens, most of which can cause severe economic losses. The plants resist the invasion of pathogens via the innate or acquired immune system for surviving biotic stress. The associations between plants and pathogens are sophisticated beyond imaging and the interactions between them can occur at a very early stage after their touching each other. A number of researchers in the past decade have shown that many biochemical events appeared even as early as 5 min after their touching for plant disease resistance response. The early molecular interactions of plants and pathogens are likely to involve protein phosphorylation, ion fluxes, reactive oxygen species (ROS) and other signalling transduction. Here, we reviewed the recent progress in the study for molecular interaction response of fungal pathogens and host plant at the early infection stage, which included many economically important crop fungal pathogens such as cereal rust fungi, tomato Cladosporium fulvum, rice blast and so on. By dissecting the earlier infection stage of the diseases, the avirulent/virulent genes of pathogen or resistance genes of plant could be defined more clearly and accurately, which would undoubtedly facilitate fungal pathogenesis study and resistant crop breeding.


Subject(s)
Disease Resistance/genetics , Fungi/genetics , Plant Diseases/genetics , Plants/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungi/pathogenicity , Fungi/physiology , Gene Expression Regulation, Fungal , Gene Expression Regulation, Plant , Host-Pathogen Interactions/genetics , Plant Diseases/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism , Plants/microbiology , Virulence/genetics
13.
J Biochem Mol Toxicol ; 31(7)2017 Jul.
Article in English | MEDLINE | ID: mdl-28111842

ABSTRACT

Cytochrome P450s are involved in detoxification and activation of benzo[a]pyrene (BaP) with unclear balance and unknown contribution of other oxidoreductases. Here, we investigated the BaP and BaP-induced mutagenicity in hepatic and extra-hepatic tissues using hepatic P450 reductase null (HRN) gpt mice. After 2-week treatment (50 mg/kg, i.p. 4 days), BaP in the liver and lung of HRN-gpt mice were increased. BaP promoted gpt mutant frequency (MF) in HRN-gpt mice liver. MF of gpt in the lung and Pig-a in hematopoietic cells induced by BaP in HRN-gpt mice were increased than in gpt mice. BaP-7,8-diol-9,10-epoxide (BPDE)-DNA adducts in vitro was analyzed for enzymes detection in BaP bioactivation. Specific inhibitors of 5-lipoxygenase, cyclooxygenase-1&2, and aldo-keto reductase resulted in more than 80% inhibition rate in the DNA adduct formation, further confirmed by Macaca fascicularis hepatic S9 system. Our results suggested the detoxification of BaP primarily depends on cytochrome P450, while the bioactivation involves additional oxidoreductases.


Subject(s)
Aldo-Keto Reductases/metabolism , Arachidonate 5-Lipoxygenase/metabolism , Benzo(a)pyrene/pharmacokinetics , Cytochrome P-450 Enzyme System/metabolism , Liver/enzymology , Aldo-Keto Reductases/genetics , Animals , Arachidonate 5-Lipoxygenase/genetics , Benzo(a)pyrene/pharmacology , Cytochrome P-450 Enzyme System/genetics , Hematopoietic Stem Cells/enzymology , Inactivation, Metabolic , Macaca fascicularis , Mice , Mice, Knockout
14.
Article in English | MEDLINE | ID: mdl-28065822

ABSTRACT

INTRODUCTION: Continuous cardiovascular data is routinely collected during preclinical safety assessment of new medicines. This generates large datasets, which must be summarised to analyse and interpret drug effects. We assessed four methods of data reduction of continuous electrocardiogram (ECG) data and examined the impact on the statistical power of the assay. METHODS: Continuous ECG data were collected from a validation study in 6 cynomolgus monkeys using jacketed telemetry. Animals received either vehicle or vehicle followed by ascending doses of moxifloxacin each on a different dosing day. Recordings made for 25h on each dosing day were reduced to discrete time-points using: 1-min average snapshots, 15-min average snapshots, large duration averages (0.5-4h) or super-intervals (3.5-9h averages). RESULTS: There was no difference in the ability to detect moxifloxacin-induced QTc prolongation between the 1- and 15-min snapshots and the large duration averages data reduction methods (minimum detectable change in QTca of 20, 17 and 18ms, respectively at 80% power). The super-intervals method detected slightly smaller changes in QTc (15ms), but did not detect a statistically significant increase in QTc after the lowest dose of moxifloxacin, in contrast to the other methods. There were fewer statistically significant differences between dosing days in animals given vehicle when the large duration averages and super-interval reduction techniques were used. DISCUSSION: There is no marked difference in the power of detection of drug-induced ECG changes in cynomolgus monkeys when using either small duration average or large duration average data reduction techniques. Use of larger duration averages or super-intervals may facilitate data interpretation by reducing the incidence of spurious significant differences that occur by chance between dosing days.


Subject(s)
Electrocardiography/drug effects , Electrocardiography/methods , Heart Rate/drug effects , Heart Rate/physiology , Statistics as Topic/methods , Telemetry/methods , Animals , Anti-Bacterial Agents/pharmacology , Female , Fluoroquinolones/pharmacology , Macaca fascicularis , Male , Moxifloxacin
15.
J Nat Med ; 70(3): 584-91, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26968537

ABSTRACT

Plants possess various natural antiviral properties. Epigallocatechin-3-gallate (EGCG), a major component of green tea, inhibits a variety of viruses. However, the clinical application of EGCG is currently hindered by a scarcity of information on its molecular mechanism of action. In the present study, we examined the anti-HBV (hepatitis B virus) effects of catechins from green tea at the transcriptional and antigen-expression levels, as well as the associated molecular mechanisms, because HBV-associated liver diseases have become a key public health issue due to their serious impact on human physical and mental health. By using fluorescence quenching and affinity binding, we demonstrated that EGCG is an important transcriptional regulator of the HBV genome, which it achieves by interacting with farnesoid X receptor alpha (FXRα). Luciferase assay showed that EGCG effectively inhibited the transcription of the HBV promoter dose-dependently when expression plasmids of FXRα and retinoid X receptor α (RXRα) were co-transfected into HEK293 cells. These results indicate that the downregulation of the HBV antigen and the decrease in the transcriptional activation of the HBV EnhII/core promoter by FXRα/RXRα are mainly due to the interaction between EGCG and FXRα. Therefore, EGCG, an antagonist of FXRα in liver cells, has the potential to be employed as an effective anti-HBV agent.


Subject(s)
Catechin/analogs & derivatives , Hepatitis B virus/chemistry , Receptors, Cytoplasmic and Nuclear/chemistry , Tea/chemistry , Catechin/chemistry , Cell Line, Tumor , Hep G2 Cells , Humans
16.
Int J Mol Sci ; 16(7): 16454-68, 2015 Jul 20.
Article in English | MEDLINE | ID: mdl-26204831

ABSTRACT

Exposure to aristolochic acid I (AAI) can lead to aristolochic acid nephropathy (AAN), Balkan endemic nephropathy (BEN) and urothelial cancer. The induction of hepatic CYP1A, especially CYP1A2, was considered to detoxify AAI so as to reduce its nephrotoxicity. We previously found that baicalin had the strong ability to induce CYP1A2 expression; therefore in this study, we examined the effects of baicalin on AAI toxicity, metabolism and disposition, as well as investigated the underlying mechanisms. Our toxicological studies showed that baicalin reduced the levels of blood urea nitrogen (BUN) and creatinine (CRE) in AAI-treated mice and attenuated renal injury induced by AAI. Pharmacokinetic analysis demonstrated that baicalin markedly decreased AUC of AAI in plasma and the content of AAI in liver and kidney. CYP1A induction assays showed that baicalin exposure significantly increased the hepatic expression of CYP1A1/2, which was completely abolished by inhibitors of the Aromatic hydrocarbon receptor (AhR), 3',4'-dimethoxyflavone and resveratrol, in vitro and in vivo, respectively. Moreover, the luciferase assays revealed that baicalin significantly increased the luciferase activity of the reporter gene incorporated with the Xenobiotic response elements recognized by AhR. In summary, baicalin significantly reduced the disposition of AAI and ameliorated AAI-induced kidney toxicity through AhR-dependent CYP1A1/2 induction in the liver.


Subject(s)
Acute Kidney Injury/drug therapy , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Aristolochic Acids/toxicity , Balkan Nephropathy/drug therapy , Cytochrome P-450 CYP1A1/metabolism , Flavonoids/pharmacology , Receptors, Aryl Hydrocarbon/metabolism , Acute Kidney Injury/etiology , Acute Kidney Injury/metabolism , Animals , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Balkan Nephropathy/etiology , Balkan Nephropathy/metabolism , Cytochrome P-450 CYP1A1/genetics , Flavonoids/therapeutic use , Hep G2 Cells , Humans , Kidney/drug effects , Kidney/metabolism , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Receptors, Aryl Hydrocarbon/antagonists & inhibitors
17.
Article in English | MEDLINE | ID: mdl-25979821

ABSTRACT

INTRODUCTION: Assessing the cardiovascular safety of new chemical or biological entities is important during pre-clinical development. Electrocardiogram (ECG) assessments in non-human primate (NHP) toxicology studies are often made using non-invasive telemetry systems. We investigated whether ECG recording was feasible during group housing of NHPs, rather than the usual single housed arrangement, and whether it would impact the data collected or affect the ability to detect drug-induced changes in QTc interval. METHODS: Following a period of acclimatisation to jackets, cynomolgus monkeys (3 males and 3 females) were housed in same sex groups of 3. Female monkeys were administered 4 doses of vehicle while male monkeys were administered vehicle, 15, 45, and 135mg/kg moxifloxacin. Each dose was administered on a separate dosing day. The same dosing protocol was repeated with the animals singly housed and the results from the two phases were compared including assessment of statistical power. RESULTS: Heart rate (HR) was significantly lower, and PR and QT intervals were significantly higher, at multiple time points when the animals were group housed compared with the singly housed phase. QRS duration and QTc interval were less affected. Moxifloxacin increased QT and QTc intervals but had no consistent effect on HR, QRS duration or PR interval under group housed or singly housed conditions. Power analysis suggested that group housing did not adversely affect the magnitude of detectable changes of ECG parameters. In general, detection of slightly smaller changes was achieved under conditions of group housing. DISCUSSION: The current study shows group housing to be technically possible during non-invasive ECG recording, resulting in lower resting heart rates and small improvements in sensitivity of detection of drug-induced effects. Given the psychological benefits of group housing for NHPs, it is a refinement that should be considered when conducting ECG assessments in NHP toxicology studies.


Subject(s)
Drug Evaluation, Preclinical/methods , Electrocardiography/methods , Housing, Animal , Telemetry/methods , Animals , Dose-Response Relationship, Drug , Female , Fluoroquinolones/administration & dosage , Fluoroquinolones/toxicity , Heart Rate/drug effects , Heart Rate/physiology , Long QT Syndrome/chemically induced , Long QT Syndrome/diagnosis , Macaca fascicularis , Male , Moxifloxacin , Toxicity Tests/methods
18.
J Pharmacol Toxicol Methods ; 73: 72-79, 2015 Apr 19.
Article in English | MEDLINE | ID: mdl-25901446

ABSTRACT

INTRODUCTION: Assessing the cardiovascular safety of new chemical or biological entities is important during pre-clinical development. Electrocardiogram (ECG) assessments in non-human primate (NHP) toxicology studies are often made using non-invasive telemetry systems. We investigated whether ECG recording was feasible during group housing of NHPs, rather than the usual single housed arrangement, and whether it would impact the data collected or affect the ability to detect drug-induced changes in QTc interval. METHODS: Following a period of acclimatisation to jackets, cynomolgus monkeys (3 males and 3 females) were housed in same sex groups of 3. Female monkeys were administered 4 doses of vehicle whilst male monkeys were administered vehicle, 15, 45 and 135mg/kg moxifloxacin. Each dose was administered on a separate dosing day. The same dosing protocol was repeated with the animals singly housed and the results from the two phases were compared including assessment of statistical power. RESULTS: Heart rate (HR) was significantly lower, and PR and QT interval significantly higher, at multiple time points when the animals were group housed compared with the singly housed phase. QRS duration and QTc interval were less affected. Moxifloxacin increased QT and QTc intervals but had no consistent effect on HR, QRS duration or PR interval under group housed or singly housed conditions. Power analysis suggested that group housing did not adversely affect the magnitude of detectable changes of ECG parameters. In general, detection of slightly smaller changes was achieved under conditions of group housing. DISCUSSION: The current study shows group housing to be technically possible during non-invasive ECG recording, resulting in lower resting heart rates and small improvements in sensitivity of detection of drug-induced effects. Given the psychological benefits of group housing for NHPs, it is a refinement that should be considered when conducting ECG assessments in NHP toxicology studies.

19.
Genes Environ ; 37: 11, 2015.
Article in English | MEDLINE | ID: mdl-27350808

ABSTRACT

INTRODUCTION: Hepatic cytochrome P450s (CYPs) play an important role in the metabolism of plant carcinogen, aristolochic acid I (AAI). In the present study, we employed hepatic NADPH-cytochrome P450 reductase null (HRN) gpt delta transgenic mice to investigate the role of hepatic CYPs in the metabolism of AAI. DNA adduct formation, gene mutation, and tumor induction in the liver and kidneys were analyzed. Pharmacokinetic analyses were performed and tissue levels of AAI were determined. RESULTS: Pretreatment with ß-naphthoflavone in wild type gpt delta transgenic mice (BNF-WT mice) could increase the rate of clearance of AAI in blood and tissues, and decrease the formation of AAI-DNA adducts in kidney. In contrast, there was reduced clearance of AAI in HRN gpt delta mice, which showed increased concentration of AAI in tissues and increased levels of DNA adducts. The mutant frequencies of gpt gene, induced by AAI, in the kidneys of HRN gpt delta mice were significantly higher than that in WT mice. In the tumor induction assay, after treatment for 2 months with daily doses of 5 mg/kg AAI, mice were kept under observation for 7 months. During this period, papillomatous changes occurred in the forestomach of both WT-AAI mice and HRN gpt delta-AAI mice. Squamous cell carcinomas were found in the forestomach of 2 HRN gpt delta-AAI mice, which had also metastasized to other tissues. In addition, adenomas were found in 2 of 8 HRN gpt delta-AAI mice, in the absence of squamous cell carcinomas. CONCLUSION: These results indicated that the main role of hepatic CYPs is to aid in the excretion of AAI, and to protect the target organs against AAI induced DNA adduct formation, mutagenesis, and tumorigenesis.

20.
Food Funct ; 4(2): 297-302, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23142768

ABSTRACT

Naringenin is a natural flavonoid aglycone of naringin that has been reported to have a wide range of pharmacological properties, such as antioxidant activity and free radical scavenging capacity. This study was designed to examine the hepatoprotective effect of naringenin against acetaminophen (250 mg kg(-1), sc) in metallothionein (MT)-null mice. 42 SPF MT-knockout mice were used. Naringenin (200, 400, and 800 mg kg(-1), ig) was administered for 4 days before exposure to acetaminophen (250 mg kg(-1), sc). Liver injury was measured by serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH), as well as liver malondialdehyde (MDA). The glutathione-to-oxidized glutathione ratio (GSH/GSSG) was also assessed. The evidence of liver injury induced by acetaminophen included not only a significant increase in the levels of serum ALT, AST, LDH and liver MDA, and also a significant decrease in GSH/GSSG. Pretreatment of mice with naringenin at 400 and 800 mg kg(-1) reversed the altered parameters. Such reversal effects were dose-dependent: ALT decreased 78.62% and 98.03%, AST decreased 88.35% and 92.64%, LDH decreased 76.54% and 81.63%, MDA decreased 48.59% and 66.27% at a dose of 400 and 800 mg kg(-1) respectively; GSH/GSSG increased 22.57% and 16.93% at a dose of 400 and 800 mg kg(-1) respectively. Histopathological observation findings were also consistent with these effects. Together, this study suggests that naringenin can potentially reverse the hepatotoxic damage of acetaminophen intoxication in MT-null mice.


Subject(s)
Acetaminophen/toxicity , Chemical and Drug Induced Liver Injury/prevention & control , Flavanones/administration & dosage , Metallothionein/deficiency , Protective Agents/administration & dosage , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases/blood , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/genetics , Chemical and Drug Induced Liver Injury/metabolism , Glutathione/metabolism , Humans , Liver/drug effects , Liver/metabolism , Male , Malondialdehyde/metabolism , Metallothionein/genetics , Mice , Mice, Knockout
SELECTION OF CITATIONS
SEARCH DETAIL
...