Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
BMC Genomics ; 25(1): 460, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38730330

ABSTRACT

BACKGROUND: Zingiber officinale Roscoe, colloquially known as ginger, is a crop of significant medicinal and culinary value that frequently encounters adversity stemming from inhospitable environmental conditions. The MYB transcription factors have garnered recognition for their pivotal role in orchestrating a multitude of plant biological pathways. Nevertheless, the enumeration and characterization of the MYBs within Z. officinale Roscoe remains unknown. This study embarks on a genome-wide scrutiny of the MYB gene lineage in ginger, with the aim of cataloging all ZoMYB genes implicated in the biosynthesis of gingerols and curcuminoids, and elucidating their potential regulatory mechanisms in counteracting abiotic stress, thereby influencing ginger growth and development. RESULTS: In this study, we identified an MYB gene family comprising 231 members in ginger genome. This ensemble comprises 74 singular-repeat MYBs (1R-MYB), 156 double-repeat MYBs (R2R3-MYB), and a solitary triple-repeat MYB (R1R2R3-MYB). Moreover, a comprehensive analysis encompassing the sequence features, conserved protein motifs, phylogenetic relationships, chromosome location, and gene duplication events of the ZoMYBs was conducted. We classified ZoMYBs into 37 groups, congruent with the number of conserved domains and gene structure analysis. Additionally, the expression profiles of ZoMYBs during development and under various stresses, including ABA, cold, drought, heat, and salt, were investigated in ginger utilizing both RNA-seq data and qRT-PCR analysis. CONCLUSION: This work provides a comprehensive understanding of the MYB family in ginger and lays the foundation for the future investigation of the potential functions of ZoMYB genes in ginger growth, development and abiotic stress tolerance of ginger.


Subject(s)
Multigene Family , Phylogeny , Plant Proteins , Stress, Physiological , Transcription Factors , Zingiber officinale , Zingiber officinale/genetics , Stress, Physiological/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant
2.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1621-1631, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621947

ABSTRACT

Network pharmacology was employed to probe into the mechanism of Fushen Granules in treating peritoneal dialysis-rela-ted peritonitis(PDRP) in rats. The main active components of Fushen Granules were searched against the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, and their targets were predicted. PDRP-related targets were retrieved from DisGeNET and other databases. The common targets shared by the drug and the disease were identified by the online tool, and protein-protein interaction(PPI) network of the common targets. The obtained 276 common targets were imported into DAVID for GO function enrichment and KEGG pathway enrichment. The main signaling pathway of Fushen Granules in the treatment of PDRP was predicted as Toll-like receptor 4(TLR4)/nuclear factor(NF)-κB. The rat model of uremia was induced by 5/6 nephrectomy. From two weeks after operation, the rat model of peritoneal dialysis(PD) was established by intraperitoneal injection of 20 mL dialysate with 1.25% glucose every day. The sham operation group and model group received 2 mL normal saline by gavage every day. The rats in Fushen Gra-nules groups were administrated with 2 mL solutions of low-(0.54 g·kg~(-1)), medium-(1.08 g·kg~(-1)) and high-dose(2.16 g·kg~(-1)) Fushen Granules every day. The bifico group received 2 mL(113.4 mg·kg~(-1)) of bifico solution every day. At the end of the 8th week, the levels of serum creatinine(Scr) and blood urea nitrogen(BUN) in each group were measured. The serum levels of hypersensitive C reactive protein(hs-CRP), tumor necrosis factor(TNF)-α, and interleukin(IL)-6 were measured, and the pathological changes in the colon tissue were observed by hematoxylin-eosin(HE) staining. The serum levels of lipopolysaccharide(LPS) and lipopolysaccharide-binding protein(LBP) of rats were measured, and the expression levels of LBP, TLR4, NF-κB p65, inhibitor of κB kinase α(IκBα), TNF-α, and IL-1ß in the colon tissue were determined. Compared with sham operation group, the model group had abnormal structure of all layers of colon tissue, sparse and shorter intestinal villi, visible edema in mucosal layer, wider gap, obvious local inflammatory cell infiltration, significantly decreased body weight(P<0.01), and significantly increased kidney function index(Scr, BUN) content(P<0.01). Serum levels of inflammatory cytokines(hs-CRP, TNF-α, IL-6), LPS and LBP were significantly increased(P<0.01), protein expressions of LBP, TLR4, NF-κB p65, TNF-α and IL-1ß were significantly increased(P<0.01), and protein expressions of IκBα were significantly decreased(P<0.01). Compared with model group, intestinal villi damage in colonic tissue of rats in low-, medium-and high-dose Fushen Granules groups and bifico group were alleviated to different degrees, edema in submucosa was alleviated, space was narrowed, and inflammatory cell infiltration in lamina propria was reduced. The contents of renal function index(Scr, BUN) and serum inflammatory factors(hs-CRP, TNF-α, IL-6) were significantly decreased(P<0.05 or P<0.01) in medium-and high-dose Fushen Granules groups and bifico group(P<0.05 or P<0.01). Serum LPS and LBP contents in Fushen Granules group and bifico group were significantly decreased(P<0.01), protein expressions of LBP, TLR4, NF-κB p65, TNF-α and IL-1ß in Fushen Granules group were significantly decreased(P<0.05 or P<0.01), and protein expressions of IκBα were significantly increased(P<0.01). The expression of LBP protein in bifico group was significantly decreased(P<0.01). The results suggest that Fushen Granules can protect the residual renal function of PD rats, reduce the inflammatory response, and protect the colon tissue. Based on network pharmacology, TLR4/NF-κB pathway may be the main signaling pathway of Fushen granule in the treatment of PDRP. The results showed that Fushen Granules could improve intestinal inflammation and protect intestinal barrier to prevent PDRP by regulating the expression of key factors in TLR4/NF-κB pathway in colon of PD rats.


Subject(s)
Animal Experimentation , Peritoneal Dialysis , Peritonitis , Rats , Animals , NF-kappa B/genetics , NF-kappa B/metabolism , NF-KappaB Inhibitor alpha , Network Pharmacology , Tumor Necrosis Factor-alpha/metabolism , C-Reactive Protein , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Interleukin-6 , Lipopolysaccharides , Peritonitis/drug therapy , Peritoneal Dialysis/adverse effects , Edema
3.
Phytomedicine ; 125: 155346, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38237511

ABSTRACT

BACKGROUND: Hyperhomocysteine (HHcy) plays an important role in promoting inflammation and cell death of tubular epithelial cells. However, the role of HHcy and Astragaloside IV (AS-IV) in sepsis associated acute kidney injury (S-AKI) remain unclear. PURPOSE: A significant aspect of this study aimed to elucidate the effect of AS-Ⅳ treatment on HHcy-exacerbated S-AKI and reveal its potential mechanism. METHODS: Male C57BL/6 J mice fed with specific diet containing 2% methionine were established as in vivo models, and AS-Ⅳ was orally administrated continuously for 3 weeks, and then LPS (10 mg·kg-1 bodyweight) was given by a single intraperitoneal injection. The renal morphological changes were evaluated by HE and PAS staining. RNA-sequencing analysis was applied to select key signaling. The NRK-52E cells exposed to Hcy or combined with LPS were used as in vitro models. The mRNA and protein expression levels of Gpr97-TPL2 signaling were examined by qRT-PCR and western blotting assays. RESULTS: In vivo, HHcy mice developed more severe renal injury and prevalent tubular inflammation after LPS injection. In vitro, the levels of NGAL, Gpr97 and TPL2 were significantly increased in NRK-52E cells induced by Hcy (1.6 mM) or in combination with LPS. Notably, the effects of Hcy on TPL2 signaling was abolished by transfecting TPL2 siRNA or treating TPL2 inhibitor, without alterations in Gpr97. However, the enhancement of Gpr97-TPL2 signaling induced by Hcy was counteracted by Gpr97 siRNA. Subsequently, our findings demonstrated that AS-Ⅳ treatment can improve renal function in HHcy-exacerbated S-AKI mice. Mechanistically, AS-Ⅳ alleviated renal tubular damage characterized by abnormal increases in KIM-1, NGAL, TPL2, Gpr97, Sema3A and TNF-α, and decreases in survivin in vivo and in vitro mainly through suppressing the activation of Gpr97-TPL2 signaling. CONCLUSION: The present study suggested that HHcy-exacerbated S-AKI was mediated mechanically by activation of Gpr97-TPL2 signaling for the first time. Furthermore, our research also illustrated that AS-Ⅳ protected against HHcy-exacerbated S-AKI by attenuating renal tubular epithelial cells damage through negatively regulating Gpr97-TPL2 signaling, proposing a natural product treatment strategy for HHcy-exacerbated S-AKI.


Subject(s)
Acute Kidney Injury , Saponins , Sepsis , Triterpenes , Male , Mice , Animals , Lipocalin-2/adverse effects , Lipopolysaccharides/adverse effects , Mice, Inbred C57BL , Acute Kidney Injury/chemically induced , Sepsis/complications , Sepsis/drug therapy , RNA, Small Interfering , Inflammation
4.
Diabetes ; 73(4): 618-627, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38211557

ABSTRACT

At present, safe and effective treatment drugs are urgently needed for diabetic kidney disease (DKD). Circulating protein biomarkers with causal genetic evidence represent promising drug targets, which provides an opportunity to identify new therapeutic targets. Summary data from two protein quantitative trait loci studies are presented, one involving 4,907 plasma proteins data from 35,559 individuals and the other encompassing 4,657 plasma proteins among 7,213 European Americans. Summary statistics for DKD were obtained from a large genome-wide association study (3,345 cases and 2,372 controls) and the FinnGen study (3,676 cases and 283,456 controls). Mendelian randomization (MR) analysis was conducted to examine the potential targets for DKD. The colocalization analysis was used to detect whether the potential proteins exist in the shared causal variants. To enhance the credibility of the results, external validation was conducted. Additionally, enrichment analysis, assessment of protein druggability, and the protein-protein interaction networks were used to further enrich the research findings. The proteome-wide MR analyses identified 21 blood proteins that may causally be associated with DKD. Colocalization analysis further supported a causal relationship between 12 proteins and DKD, with external validation confirming 4 of these proteins, and TGFBI was affirmed through two separate group data sets. These results indicate that targeting these four proteins could be a promising approach for treating DKD, and warrant further clinical investigations.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Humans , Proteome/genetics , Diabetic Nephropathies/genetics , Genome-Wide Association Study , Mendelian Randomization Analysis , Blood Proteins , Polymorphism, Single Nucleotide
5.
Plants (Basel) ; 12(19)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37836129

ABSTRACT

Ginger (Zingiber officinale Roscoe), a widely consumed edible and medicinal plant, possesses significant nutritional and economic value. Abiotic stresses such as drought and low temperatures can impact the growth and development of ginger. The plant-specific transcription factor Teosinte branched1/cycloidea/proliferating cell factor (TCP) has progressively been identified in various plants for its role in regulating plant growth and development as well as conferring resistance to abiotic stresses. However, limited information on the TCP family is available in ginger. In this study, we identified 20 TCP members in the ginger genome, which were randomly distributed across 9 chromosomes. Based on phylogenetic analysis, these ginger TCP were classified into two subfamilies: Class I (PCF) and Class II (CIN, CYC/TB). The classification of the identified ginger TCPs was supported by a multi-species phylogenetic tree and motif structure analysis, suggesting that the amplification of the ginger TCP gene family occurred prior to the differentiation of angiosperms. The promoter region of ginger TCP genes was found to contain numerous cis-acting elements associated with plant growth, development, and abiotic stress response. Among these elements, the stress response element, anaerobic induction, and MYB binding site play a dominant role in drought responsiveness. Additionally, expression pattern analysis revealed variations in the expression of ginger TCP gene among different tissues and in response to diverse abiotic stresses (drought, low temperature, heat, and salt). Our research offers a thorough examination of TCP members within the ginger plant. This analysis greatly contributes to the understanding of how TCP genes regulate tissue development and response to stress, opening up new avenues for further exploration in this field.

6.
Metabolites ; 13(9)2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37755272

ABSTRACT

Environmental stressors such as high temperature and intense light have been shown to have negative effects on plant growth and productivity. To survive in such conditions, plants activate several stress response mechanisms. The synergistic effect of high-temperature and intense light stress has a significant impact on ginger, leading to reduced ginger production. Nevertheless, how ginger responds to this type of stress is not yet fully understood. In this study, we examined the phenotypic changes, malonaldehyde (MDA) content, and the response of four vital enzymes (superoxide dismutase (SOD), catalase (CAT), lipoxygenase (LOX), and nitrate reductase (NR)) in ginger plants subjected to high-temperature and intense light stress. The findings of this study indicate that ginger is vulnerable to high temperature and intense light stress. This is evident from the noticeable curling, yellowing, and wilting of ginger leaves, as well as a decrease in chlorophyll index and an increase in MDA content. Our investigation confirms that ginger plants activate multiple stress response pathways, including the SOD and CAT antioxidant defenses, and adjust their response over time by switching to different pathways. Additionally, we observe that the expression levels of genes involved in different stress response pathways, such as SOD, CAT, LOX, and NR, are differently regulated under stress conditions. These findings offer avenues to explore the stress mechanisms of ginger in response to high temperature and intense light. They also provide interesting information for the choice of genetic material to use in breeding programs for obtaining ginger genotypes capable of withstanding high temperatures and intense light stress.

7.
Plants (Basel) ; 12(16)2023 Aug 20.
Article in English | MEDLINE | ID: mdl-37631210

ABSTRACT

Ginger is a valuable crop known for its nutritional, seasoning, and health benefits. However, abiotic stresses, such as high temperature and drought, can adversely affect its growth and development. Heat shock transcription factors (HSFs) have been recognized as crucial elements for enhancing heat and drought resistance in plants. Nevertheless, no previous study has investigated the HSF gene family in ginger. In this research, a total of 25 ZoHSF members were identified in the ginger genome, which were unevenly distributed across ten chromosomes. The ZoHSF members were divided into three groups (HSFA, HSFB, and HSFC) based on their gene structure, protein motifs, and phylogenetic relationships with Arabidopsis. Interestingly, we found more collinear gene pairs between ZoHSF and HSF genes from monocots, such as rice, wheat, and banana, than dicots like Arabidopsis thaliana. Additionally, we identified 12 ZoHSF genes that likely arose from duplication events. Promoter analysis revealed that the hormone response elements (MEJA-responsiveness and abscisic acid responsiveness) were dominant among the various cis-elements related to the abiotic stress response in ZoHSF promoters. Expression pattern analysis confirmed differential expression of ZoHSF members across different tissues, with most showing responsiveness to heat and drought stress. This study lays the foundation for further investigations into the functional role of ZoHSFs in regulating abiotic stress responses in ginger.

9.
Mitochondrial DNA B Resour ; 8(6): 699-703, 2023.
Article in English | MEDLINE | ID: mdl-37383606

ABSTRACT

Here, the complete chloroplast genome sequence of Zingiber teres is described using MGI paired-end sequencing. The genome is 163,428 bp in length and contains a small single-copy region (SSC) of 15,782 bp, a large single-copy region (LSC) of 88,142 bp, and two inverted repeat (IR) regions of 29,752 bp. The overall GC content is 36.1%, and the GC content of the IR regions is 41.1%, which is higher than that of both the LSC region (33.8%) and SSC region (29.5%). The genome of Z. teres contains 133 complete genes, including 88 protein-coding genes (79 protein-coding gene species), 38 tRNA genes (28 tRNA species), and 8 rRNA genes (four rRNA species). Maximum likelihood phylogenetic analysis yielded a well-resolved tree of the genus Zingiber, and Z. teres and Zingiber mioga were sister species in this tree. The development of DNA barcodes could aid the identification of Zingiber species.

10.
J Agric Food Chem ; 71(27): 10304-10313, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37381782

ABSTRACT

Gray mold caused by Botrytis cinerea leads to huge economic losses to the kiwifruit (Actinidia chinensis) industry. Elucidating the molecular mechanism responding to B. cinerea is the theoretical basis for the resistance to molecular breeding of kiwifruit. Previous studies have shown that miR160 regulates plant disease resistance through the indole-3-acetic acid (IAA) signaling pathway. In this study, kiwifruit "Hongyang" was used as the material, and Ac-miR160d and its target genes were identified and cloned. Overexpression and virus-induced gene silencing (VIGS) technology combined with RNA-seq were adopted to analyze the regulatory role of Ac-miR160d in kiwifruit resistance to B. cinerea. Silencing Ac-miR160d (AcMIR160d-KN) increased kiwifruit sensitivity to B. cinerea, whereas overexpression of Ac-miR160d (AcMIR160d-OE) increased kiwifruit resistance to B. cinerea, suggesting that Ac-miR160d positively regulates kiwifruit resistance to B. cinerea. In addition, overexpression of Ac-miR160d in kiwifruit increased antioxidant enzyme activities, such as catalase (CAT) and superoxide dismutase (SOD), and endogenous phytohormone IAA and salicylic acid (SA) content, in response to B. cinerea-induced stress. RNA-seq identified 480 and 858 unique differentially expressed genes in the AcMIR160d-KN vs CK and AcMIR160d-OE vs CK groups, respectively, with fold change ≥2 and false discovery rate <0.01. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that families associated with "biosynthesis of secondary metabolites" are possibly regulated by Ac-miR160d. "Phenylpropanoid biosynthesis", "flavonoid biosynthesis", and "terpenoid backbone biosynthesis" were further activated in the two comparison groups upon B. cinerea infection. Our results may reveal the molecular mechanism by which miR160d regulates kiwifruit resistance to B. cinerea and may provide gene resources for molecular breeding in kiwifruit resistance.


Subject(s)
Actinidia , Actinidia/genetics , Actinidia/metabolism , Plant Growth Regulators/metabolism , Botrytis/physiology , Signal Transduction , Plant Diseases/genetics , Disease Resistance/genetics
11.
BMC Genomics ; 24(1): 30, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36653780

ABSTRACT

BACKGROUND: The genus Zingiber of the Zingiberaceae is distributed in tropical, subtropical, and in Far East Asia. This genus contains about 100-150 species, with many species valued as important agricultural, medicinal and horticultural resources. However, genomic resources and suitable molecular markers for species identification are currently sparse. RESULTS: We conducted comparative genomics and phylogenetic analyses on Zingiber species. The Zingiber chloroplast genome (size range 162,507-163,711 bp) possess typical quadripartite structures that consist of a large single copy (LSC, 86,986-88,200 bp), a small single copy (SSC, 15,498-15,891 bp) and a pair of inverted repeats (IRs, 29,765-29,934 bp). The genomes contain 113 unique genes, including 79 protein coding genes, 30 tRNA and 4 rRNA genes. The genome structures, gene contents, amino acid frequencies, codon usage patterns, RNA editing sites, simple sequence repeats and long repeats are conservative in the genomes of Zingiber. The analysis of sequence divergence indicates that the following genes undergo positive selection (ccsA, ndhA, ndhB, petD, psbA, psbB, psbC, rbcL, rpl12, rpl20, rpl23, rpl33, rpoC2, rps7, rps12 and ycf3). Eight highly variable regions are identified including seven intergenic regions (petA-pabJ, rbcL-accD, rpl32-trnL-UAG, rps16-trnQ-UUG, trnC-GCA-psbM, psbC-trnS-UGA and ndhF-rpl32) and one genic regions (ycf1). The phylogenetic analysis revealed that the sect. Zingiber was sister to sect. Cryptanthium rather than sect. Pleuranthesis. CONCLUSIONS: This study reports 14 complete chloroplast genomes of Zingiber species. Overall, this study provided a solid backbone phylogeny of Zingiber. The polymorphisms we have uncovered in the sequencing of the genome offer a rare possibility (for Zingiber) of the generation of DNA markers. These results provide a foundation for future studies that seek to understand the molecular evolutionary dynamics or individual population variation in the genus Zingiber.


Subject(s)
Genome, Chloroplast , Zingiberaceae , Phylogeny , Zingiberaceae/genetics , Genomics/methods , Polymorphism, Genetic , Evolution, Molecular
12.
Front Med (Lausanne) ; 10: 1302352, 2023.
Article in English | MEDLINE | ID: mdl-38249961

ABSTRACT

Background: In recent years, the role of gut microbiota and derived metabolites in renal disease has attracted more attention. It has been established that the gut microbiota is a potential target for medical interventions in renal disease including chronic kidney disease (CKD), acute kidney injury (AKI) and renal calculus. Emerging evidence has related dialysis treatment to the microbial composition and function of the intestines, and there are many reports related to HD, but few studies have been related to PD. Previous studies have found that PD patients have intestinal flora disturbances, so we speculate that intestinal flora and its metabolites may be the regulatory factors in long-term therapy of PD. And as far as we know, there have been no studies characterized the gut microbiota in PD patients of different dialysis vintages. Methods: It is a cross-sectional study based on clinical data and biological samples of 72 patients with CAPD, 13 patients with ESRD and 13 healthy volunteers. The intestinal microecological characteristics of CAPD patients were comprehensively evaluated by combining the intestinal microflora structure, enterotoxin and receptor (serum LPS and LBP), intestinal barrier function index (serum D-Lactate), intestinal uremic toxin (serum IS, PCS, TMAO), fecal SCFAs and other multi-dimensional and multi-omics studies. Furthermore, the changes of intestinal microecology in CAPD patients of different dialysis vintages (≥ 3 and < 12 months, ≥ 12 and < 24 months, ≥ 24 and < 60 months, ≥ 60 months) were further explored, and the correlations between intestinal microecology indicators and some clinical indicators were analyzed. Fecal and serum samples were collected from PD patients (PD group, n = 72), ESRD patients (ESRD group, n = 13) and healthy volunteers (Normal group, n = 13). Fecal samples were subjected to microbiome (16S rDNA) and SCFA (GC-MS) analyses. Serum samples were subjected to LPS, LBP, D-lactate, IS, PCS, and TMAO (ELISA) analyses. Results: The diversity and richness of intestinal flora in CAPD patients were lower than those in healthy people and ESRD patients, and the microflora structure was different. Anaerobes of Blautia and facultative anaerobes and aerobic bacteria with Bacilli and Lactobacillales those in Firmicutes are the main intestinal flora in CAPD patients. The abundance of Bacteroidaceae, Bacteroides, Faecalibacterium and other dominant bacteria in the intestinal tract of CAPD patients decreased. Proteobacteria, Enterobacteriaceae and Escherichia-Shigella increased their colonization (LDA > 4). In CAPD patients of different dialysis vintages, there was no significant change in the diversity and richness of microflora, and the microflora structure of PDC group was significantly different from that of PDD, which the abnormal expansion of enterobacter group was more prominent in PDC and the abundance of Bacteroides group was relatively higher in PDD. Intestinal barrier damage, intestinal uremic toxin accumulation and short-chain fatty acid reduction were observed in CAPD patients, such as the serum level of D-Lactate, PCS and TMAO were significantly higher than that in the Normal group (P < 0.05),and the fecal levels of BA and CA were significantly lower (P < 0.05). The intestinal microecological disorder of PDC group, while that of PDD group showed a better trend. Such as the PDC group had a significantly higher serum level of LPS, D-Lactate and TMAO (P < 0.01), and significantly lower serum level of LBP (P < 0.01), and lower fecal levels of AA and BA (P > 0.05) than the PDD group. Conclusion: The intestinal microecology and metabolic system of CAPD patients had changes compared with healthy people and ESRD non-dialysis patients, and there were differences in CAPD patients with different dialysis vintages. PD patients on dialysis for more than 60 months showed a better trend in the intestinal microecology than patients with 24∼36 months, which suggested that the intestinal microecology of PD patients had a certain ability of self-regulation and remodeling under the management of standardized system and it is necessary to strengthen the monitoring of the intestinal status and the occurrence of related complications in PD patients on dialysis of 24∼36 months of dialysis vintage. It is initially considered that the mechanism of intestinal microecology is a potential target for intervention in the diagnosis and treatment of CAPD and incorporating intestinal microecosystem monitoring into the long-term management of CAPD patients is a new strategy.

13.
Genes (Basel) ; 13(12)2022 11 27.
Article in English | MEDLINE | ID: mdl-36553487

ABSTRACT

Understanding the striking diversity of the angiosperms is a paramount issue in biology and of interest to biologists. The Millettiod legumes is one of the most hyper-diverse groups of the legume family, containing many economically important medicine, furniture and craft species. In the present study, we explore how the interplay of past climate change, ecological opportunities and functional traits' evolution may have triggered diversification of the Millettiod legumes. Using a comprehensive species-level phylogeny from three plastid markers, we estimate divergence times, infer habit shifts, test the phylogenetic and temporal diversification heterogeneity, and reconstruct ancestral biogeographical ranges. We found that three dramatic accumulations of the Millettiod legumes occurred during the Miocene. The rapid diversification of the Millettiod legumes in the Miocene was driven by ecological opportunities created by the emergence of new niches and range expansion. Additionally, habit shifts and the switch between biomes might have facilitated the rapid diversification of the Millettiod legumes. The Millettiod legumes provide an excellent case for supporting the idea that the interplay of functional traits, biomes, and climatic and geographic factors drives evolutionary success.


Subject(s)
Fabaceae , Phylogeny , Fabaceae/genetics , Ecosystem , Geography , Time Factors
14.
Commun Biol ; 5(1): 1125, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36284165

ABSTRACT

Populus wilsonii is an important species of section Leucoides, and the natural populations mainly grow in southwest China. In this study, a single genotype of wild P. wilsonii was sequenced and assembled at genome size of 477.35 Mb in 19 chromosomes with contig N50 of 16.3 Mb. A total of 38,054 genes were annotated, and 49.95% of the genome was annotated as repetitive elements. Phylogenetic analysis identified that the divergence between P. wilsonii and the ancestor of P. deltoides and P. trichocarpa was 12 (3-23) Mya. 4DTv and Ks distributions supported the occurrence of the salicoid WGD event (~65 Mya). The highly conserved collinearity supports the close evolutionary relationship among these species. Some key enzyme-encoding gene families related to the biosynthesis of lignin and flavonoids were expanded and highly expressed in the stems or leaves, which probably resist the damage of the natural environment. In addition, some key gene families related to cellulose biosynthesis were highly expressed in stems, accounting for the high cellulose content of P. wilsonii variety. Our findings provided deep insights into the genetic evolution of P. wilsonii and will contribute to further biological research and breeding as well as for other poplars in Salicaceae.


Subject(s)
Populus , Populus/genetics , Phylogeny , Lignin , Plant Breeding , Chromosomes , Flavonoids
15.
BMC Genomics ; 23(1): 49, 2022 Jan 13.
Article in English | MEDLINE | ID: mdl-35021996

ABSTRACT

BACKGROUND: MicroRNAs (miRNAs) are endogenous, non-coding small functional RNAs that govern the post-transcriptional regulatory system of gene expression and control the growth and development of plants. Ginger is an herb that is well-known for its flavor and medicinal properties. The genes involved in ginger rhizome development and secondary metabolism have been discovered, but the genome-wide identification of miRNAs and their overall expression profiles and targets during ginger rhizome development are largely unknown. In this study, we used BGISEQ-500 technology to perform genome-wide identification of miRNAs from the leaf, stem, root, flower, and rhizome of ginger during three development stages. RESULTS: In total, 104 novel miRNAs and 160 conserved miRNAs in 28 miRNA families were identified. A total of 181 putative target genes for novel miRNAs and 2772 putative target genes for conserved miRNAs were predicted. Transcriptional factors were the most abundant target genes of miRNAs, and 17, 9, 8, 4, 13, 8, 3 conserved miRNAs and 5, 7, 4, 5, 5, 15, 9 novel miRNAs showed significant tissue-specific expression patterns in leaf, stem, root, flower, and rhizome. Additionally, 53 miRNAs were regarded as rhizome development-associated miRNAs, which mostly participate in metabolism, signal transduction, transport, and catabolism, suggesting that these miRNAs and their target genes play important roles in the rhizome development of ginger. Twelve candidate miRNA target genes were selected, and then, their credibility was confirmed using qRT-PCR. As the result of qRT-PCR analysis, the expression of 12 candidate target genes showed an opposite pattern after comparison with their miRNAs. The rhizome development system of ginger was observed to be governed by miR156, miR319, miR171a_2, miR164, and miR529, which modulated the expression of the SPL, MYB, GRF, SCL, and NAC genes, respectively. CONCLUSION: This is a deep genome-wide investigation of miRNA and identification of miRNAs involved in rhizome development in ginger. We identified 52 rhizome-related miRNAs and 392 target genes, and this provides an important basis for understanding the molecular mechanisms of the miRNA target genes that mediate rhizome development in ginger.


Subject(s)
MicroRNAs , Zingiber officinale , Gene Expression Regulation, Plant , Zingiber officinale/genetics , Humans , MicroRNAs/genetics , Plant Leaves , Rhizome
16.
Genes (Basel) ; 14(1)2022 12 29.
Article in English | MEDLINE | ID: mdl-36672837

ABSTRACT

GRAS family proteins are one of the most abundant transcription factors in plants; they play crucial roles in plant development, metabolism, and biotic- and abiotic-stress responses. The GRAS family has been identified and functionally characterized in some plant species. However, this family in ginger (Zingiber officinale Roscoe), a medicinal crop and non-prescription drug, remains unknown to date. In the present study, 66 GRAS genes were identified by searching the complete genome sequence of ginger. The GRAS family is divided into nine subfamilies based on the phylogenetic analyses. The GRAS genes are distributed unevenly across 11 chromosomes. By analyzing the gene structure and motif distribution of GRAS members in ginger, we found that the GRAS genes have more than one cis-acting element. Chromosomal location and duplication analysis indicated that whole-genome duplication, tandem duplication, and segmental duplication may be responsible for the expansion of the GRAS family in ginger. The expression levels of GRAS family genes are different in ginger roots and stems, indicating that these genes may have an impact on ginger development. In addition, the GRAS genes in ginger showed extensive expression patterns under different abiotic stresses, suggesting that they may play important roles in the stress response. Our study provides a comprehensive analysis of GRAS members in ginger for the first time, which will help to better explore the function of GRAS genes in the regulation of tissue development and response to stress in ginger.


Subject(s)
Zingiber officinale , Zingiber officinale/genetics , Phylogeny , Gene Expression Profiling , Genome, Plant , Plant Development
17.
BMC Plant Biol ; 21(1): 561, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34823471

ABSTRACT

BACKGROUND: AP2/ERF transcription factors (TFs) constitute one of the largest TF families in plants, which play crucial roles in plant metabolism, growth, and development as well as biotic and abiotic stresses responses. Although the AP2/ERF family has been thoroughly identified in many plant species and several AP2/ERF TFs have been functionally characterized, little is known about this family in ginger (Zingiber officinale Roscoe), an important affinal drug and diet vegetable. Recent completion of the ginger genome sequencing provides an opportunity to investigate the expression profiles of AP2/ERF genes in ginger on a genome-wide basis. RESULTS: A total of 163 AP2/ERF genes were obtained in the Z.officinale genome and renamed according to the chromosomal distribution of the ZoAP2/ERF genes. Phylogenetic analysis divided them into three subfamilies, of which 35 belonged to the AP2 subfamily, 120 to ERF, three to RAV, and five to Sololist, respectively, which is in accordance with the number of conserved domains and gene structure analysis. A total of 10 motifs were detected in ZoAP2/ERF genes, and some of the unique motifs were found to be important for the function of ZoAP2/ERF genes. The chromosomal localization, gene structure, and conserved protein motif analyses, as well as the characterization of gene duplication events provided deep insight into the evolutionary features of these ZoAP2/ERF genes. The expression profiles derived from the RNA-seq data and quantitative reserve transcription (qRT-PCR) analysis of ZoAP2/ERFs during development and responses to abiotic stresses were investigated in ginger. CONCLUSION: A comprehensive analysis of the AP2/ERF gene expression patterns in various tissues by RNA-seq and qRT-PCR showed that they played an important role in the growth and development of ginger, and genes that might regulate rhizome and flower development were preliminary identified. In additionally, the ZoAP2/ERF family genes that responded to abiotic stresses were also identified. This study is the first time to identify the ZoAP2/ERF family, which contributes to research on evolutionary characteristics and better understanding the molecular basis for development and abiotic stress response, as well as further functional characterization of ZoAP2/ERF genes with an aim of ginger crop improvement.


Subject(s)
Adaptation, Physiological/genetics , Multigene Family , Stress, Physiological/genetics , Transcription Factor AP-2/genetics , Zingiber officinale/growth & development , Zingiber officinale/genetics , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Evolution, Molecular , Gene Expression Profiling , Gene Expression Regulation, Plant , Genes, Plant , Genome, Plant , Genome-Wide Association Study , Phylogeny
19.
Hortic Res ; 8(1): 189, 2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34354044

ABSTRACT

Ginger (Zingiber officinale), the type species of Zingiberaceae, is one of the most widespread medicinal plants and spices. Here, we report a high-quality, chromosome-scale reference genome of ginger 'Zhugen', a traditionally cultivated ginger in Southwest China used as a fresh vegetable, assembled from PacBio long reads, Illumina short reads, and high-throughput chromosome conformation capture (Hi-C) reads. The ginger genome was phased into two haplotypes, haplotype 1 (1.53 Gb with a contig N50 of 4.68 M) and haplotype 0 (1.51 Gb with a contig N50 of 5.28 M). Homologous ginger chromosomes maintained excellent gene pair collinearity. In 17,226 pairs of allelic genes, 11.9% exhibited differential expression between alleles. Based on the results of ginger genome sequencing, transcriptome analysis, and metabolomic analysis, we proposed a backbone biosynthetic pathway of gingerol analogs, which consists of 12 enzymatic gene families, PAL, C4H, 4CL, CST, C3'H, C3OMT, CCOMT, CSE, PKS, AOR, DHN, and DHT. These analyses also identified the likely transcription factor networks that regulate the synthesis of gingerol analogs. Overall, this study serves as an excellent resource for further research on ginger biology and breeding, lays a foundation for a better understanding of ginger evolution, and presents an intact biosynthetic pathway for species-specific gingerol biosynthesis.

20.
PeerJ ; 9: e11755, 2021.
Article in English | MEDLINE | ID: mdl-34414026

ABSTRACT

BACKGROUND: Cytochrome P450s play crucial roles in various biosynthetic reactions. Ginger (Zingiber officinale), which is often threatened by Ralstonia solanacearum, is the most economically important crop in the family Zingiberaceae. Whether the cytochrome P450 complement (CYPome) significantly responds to this pathogen has remained unclear. METHODS: Transcriptomic responses to R. solanacearum and soil moisture were analyzed in ginger, and expression profiles of the CYPome were determined based on transcriptome data. RESULTS: A total of 821 P450 unigenes with ORFs ≥ 300 bp were identified. Forty percent soil moisture suppressed several key P450 unigenes involved in the biosynthesis of flavonoids, gingerols, and jasmonates, including unigenes encoding flavonoid 3'-hydroxylase, flavonoid 3',5'-hydroxylase, steroid 22-alpha-hydroxylase, cytochrome P450 family 724 subfamily B polypeptide 1, and allene oxide synthase. Conversely, the expression of P450 unigenes involved in gibberellin biosynthesis and abscisic acid catabolism, encoding ent-kaurene oxidase and abscisic acid 8'-hydroxylase, respectively, were promoted by 40% soil moisture. Under R. solanacearum infection, the expression of P450 unigenes involved in the biosynthesis of the above secondary metabolites were changed, but divergent expression patterns were observed under different soil moisture treatments. High moisture repressed expression of genes involved in flavonoid, brassinosteroid, gingerol, and jasmonate biosynthesis, but promoted expression of genes involved in GA anabolism and ABA catabolism. These results suggest possible mechanisms for how high moisture causes elevated susceptibility to R. solanacearum infection.

SELECTION OF CITATIONS
SEARCH DETAIL
...