Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Mol Pharm ; 20(10): 4971-4983, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37699256

ABSTRACT

mRNA vaccines encoding a single spike protein effectively prevent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, the emergence of SARS-CoV-2 variants leads to a wide range of immune evasion. Herein, a unique trivalent mRNA vaccine based on ancestral SARS-CoV-2, Delta, and Omicron variant spike receptor-binding domain (RBD) mRNAs was developed to tackle the immune evasion of the variants. First, three RBD mRNAs of SARS-CoV-2, Delta, and Omicron were coencapsulated into lipid nanoparticles (LNPs) by using microfluidic technology. After that, the physicochemical properties and time-dependent storage stability of the trivalent mRNA vaccine nanoformulation were tested by using dynamic light scattering (DLS). In vitro, the trivalent mRNA vaccine exhibited better lysosomal escape ability, transfection efficiency, and biocompatibility than did the commercial transfection reagent Lipo3000. In addition, Western blot analyses confirmed that the three RBD proteins can be detected in cells transfected with the trivalent mRNA vaccine. Furthermore, ex vivo imaging analysis indicated that the livers of BALB/c mice had the strongest protein expression levels after intramuscular (IM) injection. Using a prime-boost strategy, this trivalent vaccine elicited robust humoral and T-cell immune responses in both the high-dose and low-dose groups and showed no toxicity in BALB/c mice. Three specific IgG antibodies in the high-dose group against SARS-CoV-2, Delta, and Omicron variants approached ∼1/1,833,333, ∼1/1,866,667, and ∼1/925,000, respectively. Taken together, two doses of inoculation with the trivalent mRNA vaccine may provide broad and effective immunization responses against SARS-CoV-2 and variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Mice , Humans , SARS-CoV-2/genetics , COVID-19 Vaccines , COVID-19/prevention & control , Immunization , mRNA Vaccines , Antibodies, Neutralizing
2.
J Mater Chem B ; 11(31): 7454-7465, 2023 08 09.
Article in English | MEDLINE | ID: mdl-37448376

ABSTRACT

mRNA vaccines have emerged as a highly promising approach for preventing cancer and infectious diseases, attributed to their superior immunogenicity, rapid development speed, and quality-controlled scale production. While homologous mRNA vaccine administration is currently the most prevalent method employed in clinical settings, heterologous administration is a promising avenue worth exploring. In this report, two types of mRNA vaccine formulations for SARS-CoV-2 infection were developed based on different lipid nanoparticle (LNP) delivery systems, and heterologous and homologous mRNA vaccinations were administered to explore the levels of immune responses comparatively. First, five novel H-series ionizable lipids were synthesized and confirmed by NMR and MS. Subsequently, six SARS-CoV-2 receptor-binding domain (RBD) mRNA-encapsulated LNP formulations were prepared using a microfluidic mixer based on H-series and MC3 lipids. These formulations exhibited spherical structures with an average diameter ranging from 90-140 nm, as characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The safety of these formulations was confirmed in vitro by the cytotoxicity assay. Moreover, transfection assay, lysosomal escape test, and western blot, and in vivo biodistribution analyses collectively demonstrated that lipids H03 and MC3 exhibited superior in vitro and in vivo delivery efficacy in comparison to other H-series lipids. Notably, H03-Fluc mRNA exhibited an approximately 2.2-fold higher in vivo bioluminescence signal intensity than MC3-Fluc mRNA. Additionally, evaluation of humoral immunity demonstrated that homologous H03-mRNA vaccination elicited an immune response that was approximately 3-fold higher than that of homologous MC3-mRNA vaccination. More significantly, the heterologous H03-mRNA/MC3-mRNA vaccination elicited an immune response that was approximately 2-3-fold higher than that of homologous H03-mRNA vaccination and 6-9-fold higher than that of homologous MC3-mRNA vaccination, without any observable adverse effects. These results suggest that heterologous mRNA vaccination is superior to homologous mRNA vaccination and may be attributed to differences in LNP carriers. Therefore, our research may inspire further exploration of different delivery systems to enhance mRNA-based therapeutics.


Subject(s)
COVID-19 , Humans , COVID-19/prevention & control , SARS-CoV-2 , Tissue Distribution , mRNA Vaccines , Lipids
3.
Int J Pharm ; 642: 123155, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37402442

ABSTRACT

Lipid nanoparticles (LNPs)-based mRNA vaccines have shown great potential in the fight against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. However, it remains still a challenge to improve the delivery efficiency of LNPs and the long-term stability of their mediated mRNA vaccines. Herein, a novel ionizable lipid 2-hexyldecyl 6-(ethyl(3-((2-hexyldecyl)oxy)-2-hydroxypropyl)amino)hexanoate (HEAH) derived LNPs were developed for delivering the receptor binding domain (RBD) mRNAs. In vitro cell assays confirmed that the ionizable lipid HEAH with one ether bond and one ester bond derived LNPs possessed higher mRNA delivery efficiency compared with the approved ALC-0315 with two ester bonds used in the BNT162b2 vaccine. Notably, the HEAH-derived LNPs powder lyophilized did not significantly change for 30 days after storage at 37 °C indicating good thermostability. After two RBD mRNAs of Delta and Omicron variants were encapsulated into the HEAH-derived LNPs, a bivalent mRNA vaccine was obtained as a nanoparticle formulation. Importantly, the bivalent mRNA vaccine not only resisted Delta and Omicron and also generated protective antibodies against ancestral SARS-CoV-2. The HEAH-mediated bivalent vaccine induced stronger humoral and cellular immunity than those of the ALC-0315 group. Taken together, the ionizable lipid HEAH-derived LNPs show outstanding potential in improving the delivery efficiency of mRNA and the stability of mRNA vaccine.


Subject(s)
COVID-19 , Nanoparticles , Humans , Vaccines, Combined , BNT162 Vaccine , COVID-19/prevention & control , SARS-CoV-2/genetics , mRNA Vaccines , Decanoates , Esters , Antibodies, Viral
4.
Mol Pharm ; 20(5): 2513-2526, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37071030

ABSTRACT

Docetaxel (DTX), a semisynthetic analogue of paclitaxel, is often used to treat cancers. Owing to its poor aqueous solubility, the current formulation of DTX for clinical applications involves using high surfactant and ethanol concentrations, causing hypersensitivity reactions. To overcome this issue, we developed a reduction-responsive DTX prodrug encapsulated within human serum albumin (HSA) nanoparticles (DTX-SS-COOH/HSA NPs). First, the DTX prodrug was conjugated to undecanoic acid through a disulfide bond (DTX-SS-COOH) via a four-step reaction. Subsequently, DTX-SS-COOH/HSA NPs were prepared via the desolvation method. The NPs exhibited a spherical structure with a diameter range of 140-220 nm, as revealed by dynamic light scattering and transmission electron microscopy. Fluorescence quenching analysis confirmed the formation of DTX-SS-COOH/HSA, which was ascribed to electrostatic interactions and hydrophobic forces. Notably, NPs with a feed mole ratio corresponding to DTX-SS-COOH/HSA = 9:1 demonstrated high drug-loading and encapsulation efficiency of 12.84 and 93.11%, respectively, alongside good stability. Moreover, the reduced responsiveness experiment revealed an accelerated DTX release in the presence of glutathione. An in vivo pharmacokinetic study indicated that DTX-SS-COOH/HSA NPs demonstrated considerably a prolonged circulation time (6.2-fold) compared to that of free DTX. Ultimately, the antitumor test of MDA-MB-231 tumor-bearing mice revealed that DTX-SS-COOH/HSA NPs were superior to DTX/HSA NPs for tumor growth inhibition. Thus, DTX-SS-COOH/HSA NPs represent a promising DTX nanoformulation for clinical application.


Subject(s)
Antineoplastic Agents , Nanoparticles , Neoplasms , Prodrugs , Humans , Mice , Animals , Docetaxel , Serum Albumin, Human , Paclitaxel , Drug Carriers/chemistry , Nanoparticles/chemistry , Cell Line, Tumor , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Neoplasms/drug therapy
5.
J Mater Chem B ; 11(11): 2478-2489, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36843543

ABSTRACT

7-Ethyl-10-hydroxyl camptothecin (SN38), a semisynthetic derivative of camptothecin, exhibited extreme pharmacological activities in treating a range of cancers. However, its poor aqueous solubility and low stability hinder its clinical applications. Hence, a redox-responsive SN38 prodrug encapsulated human serum albumin (HSA) nanoparticle is developed to realize its potential in the clinic. First, a disulfide bond bridged 7-ethyl-10-hydroxyl camptothecin-undecanoic acid conjugate (SN38-SS-COOH) was synthesized and characterized structurally. After that, SN38-SS-COOH/HSA nanoparticles (SNH NPs) were prepared by the desolvation method. The SNH NPs with a feed molar ratio of 9 : 1 of SN38-SS-COOH : HSA showed a spherical structure with a diameter range of approximately 120-150 nm revealed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Fluorescence quenching confirmed the formation of SNH NP complexes by dual hydrophobic force and electrostatic interaction. The SNH NPs have a high drug loading of 10.44% and an encapsulation efficiency of 89.59% with good stability. Moreover, the redox responsiveness was validated by glutathione (GSH)-triggered accelerated release of parent drug SN38. In an in vivo pharmacokinetic study, the SNH NPs exhibited a significantly prolonged circulation time (t1/2, 3.77-fold) compared with free SN38. Finally, the in vivo antitumor efficacy and systemic toxicity of SNH NPs in a breast xenograft model were thoroughly evaluated. The inhibition rate of tumor growth induced by the SNH NPs reached 70.1%, while only 50.1% was achieved for irinotecan at an equivalent SN38 dosage of 10 mg kg-1. More importantly, the SNH NPs achieved a higher level of tumor growth inhibition (85.3%) by increasing the dosage to 60 mg kg-1 SN38 without obvious adverse effects. Taken together, the use of redox-responsive SN38 prodrug/HSA NPs could be a promising strategy to deliver highly active SN38 for breast cancer chemotherapy.


Subject(s)
Antineoplastic Agents, Phytogenic , Breast Neoplasms , Nanoparticles , Prodrugs , Humans , Female , Camptothecin/pharmacology , Camptothecin/therapeutic use , Breast Neoplasms/drug therapy , Serum Albumin, Human , Prodrugs/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Cell Line, Tumor , Xenograft Model Antitumor Assays , Nanoparticles/chemistry , Disulfides
6.
Int J Pharm ; 635: 122761, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36822341

ABSTRACT

Human serum albumin (HSA) is an important nanocarrier of hydrophobic drugs due to its biocompatibility, bioresorbability, non-immunogenicity and intrinsic targetability. However, HSA/drug nanocomplexes have to experience complicated manufacturing process including multiple high-pressure homogenization and removing organic solvent under reduced pressure condition. Besides, the clinical application of these HSA/drug nanocomplexes is often limited because of their unsatisfactory stability and restricted dose. To overcome these issues, a redox-responsive paclitaxel-pentadecanoic acid prodrug conjugate embedded human serum albumin nanoparticles (NPs) was developed as a model in this report. First, PTX was activated and conjugated with 11-mercaptoundecanoic acid through a disulfide bond. The resultant disulfide bond bridged paclitaxel-pentadecanoic acid conjugate (PTX-SS-C10-COOH) was characterized by NMR and MS. After that, PTX-SS-C10-COOH dissolved in ethanol was mixed with HSA in water followed by lyophilization to generate HSA/PTX-SS-C10-COOH nanoparticles (HPTX NPs). Dynamic light scattering (DLS) and transmission electron microscopy (TEM) characterization indicated that the HPTX NPs have spherical structure with an average diameter of approximately 120 nm. The formation of HSA/PTX-SS-C10-COOH NPs was confirmed by fluorescence quenching technology, ascribed to electrostatic and hydrophobic interactions. The HPTX NPs displayed a highdrug loading of 29.78 % and an entrapment efficiency of 94.16 %. Their reduced responsiveness was validated by glutathione (GSH)-triggered fast release of PTX. The pharmacokinetics, antitumor efficacy and systemic toxicity of HPTX NPs were thoroughly evaluated. The results showed that the HPTX NPs had longer retention, more effective tumor growth inhibition and lower toxicity compared with commercialized Taxol®. Importantly, the HPTX NPs could be administered at much high dose to achieve a significant tumor growth inhibition compared with Abraxane®. Together, the redox-responsive HPTX NPs with high drug loading is a promising strategy to deliver PTX for cancer chemotherapy.


Subject(s)
Nanoparticles , Neoplasms , Humans , Paclitaxel , Serum Albumin, Human , Nanoparticles/chemistry , Neoplasms/drug therapy , Oxidation-Reduction , Disulfides , Cell Line, Tumor
7.
Bioorg Med Chem ; 78: 117135, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36577327

ABSTRACT

Vascular endothelial growth factor A (VEGFA) plays an important role in the healing of skin wound. However, the application of VEGFA protein in clinic is limited because of its high cost manufacturing, complicated purification and poor pharmacokinetic profile. Herein, we developed nucleoside-modified mRNA encoding VEGFA encapsulated ionizable lipid nanoparticles (LNP) to improve angiogenesis and increase wound healing rate. First, VEGFA mRNA was synthesized by an in vitro transcription (IVT) method. After that, VEGFA mRNA-LNP was prepared by encapsulating mRNA in ionizable lipid based nanoparticles via a microfluidic mixer. The physicochemical properties of VEGFA mRNA-LNP were investigated via dynamic light scattering (DLS) and transmission electron microscopy (TEM). The results showed that the VEGFA mRNA-LNP possessed regular spherical morphology with an average size of 112.67 nm and a negative Zeta potential of -3.43 mV. The LNP delivery system had excellent lysosome escape capability and high transfection efficiency. ELISA and Western Blot analysis indicated that the mRNA-LNP could express VEGFA protein in Human umbilical vein endothelial cells (HUVECs). Besides, endothelial tube formation, cell proliferation and scratch assays were performed. The results revealed VEGFA mRNA-LNP boosted angiogenesis, cell proliferation and cell migration by expressing VEGFA protein. Finally, C57BL/6 mouse model of skin wound was established and intradermally treated with VEGFA mRNA-LNP. The VEGFA mRNA-LNP treated wounds were almost healed with an average wound size of 1.56 mm2 compared with the blank of 18.66 mm2 after 9 days. The results indicated that the VEGFA mRNA-LNP was able to significantly expedite wound healing. Histological analysis further demonstrated tissue epithelialization, collagen deposition and enhancement of vascular density after treatment. Taken together, VEGFA mRNA-LNP can be uptaken by cells to express protein effectively and promote wound healing, which may provide a promising strategy for clinical remedy.


Subject(s)
Nanoparticles , Vascular Endothelial Growth Factor A , Mice , Animals , Humans , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , RNA, Messenger/genetics , Mice, Inbred C57BL , Wound Healing , Nanoparticles/chemistry , Human Umbilical Vein Endothelial Cells/metabolism
8.
Int J Pharm ; 632: 122565, 2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36586634

ABSTRACT

Diabetes is often accompanied by chronic non-healing wounds, and vascularendothelial growth factor A (VEGF-A) is crucial in the treatment of chronic diabetic wounds. However, the application of VEGF-A protein in clinic is limited due to poor absorption and short half-life of protein macromolecule. Herein, we employed an emerging protein replacement therapy by delivering VEGF-A mRNA into the body to express the desired protein to accelerate diabetic wound healing. Primarily, VEGF-A mRNA was synthesized by an in vitro transcription (IVT) method and encapsulated with an ionizable lipid-mediated nanoparticles (LNP) delivery system via a microfluidic method. The resultant LNP/VEGF-A mRNA were characterized by using dynamic light scattering (DLS) and transmission electron microscope(TEM). The nanoparticles have regular spherical morphology with an average particle size of 101.17 nm, a narrow polydispersity (PDI) of 0.17 and negative Zeta potential of -3.05 mV. The bioactivities of the nanoparticles formulation were evaluated against HUVEC cells through cell proliferation, migration and tube formation assays. It was found that the LNP/VEGF-A mRNA nanoparticles could promote endothelial cell proliferation. In addition, they exhibited successful mRNA delivery and high VEGF-A protein expression in vitro and in vivo by means of Western Blot assay and in vivo imaging system (IVIS). Finally, C57BL/6 diabetic mice model was established and intradermally treated with the LNP/VEGF-A mRNA nanoparticles. It was found that the LNP/VEGF-A mRNA treated wounds were almost healed after 14 days with an average wound area of 2.4 %, compared with the PBS group of 21.4 %. Apparently, the nanoparticles formulation was able to significantly expedite diabetic wound healing. The histological analysis containing H&E, Masson's trichrome staining and CD31 further confirmed the healing efficacy and low toxicity of the formulation. Taken together, the LNP/VEGF-A mRNA nanoparticles can be taken up by cells to express protein effectively and improve diabetic wound healing, which might have potential application in the treatment of chronic diabetic wounds as a protein replacement therapy.


Subject(s)
Diabetes Mellitus, Experimental , Nanoparticles , Mice , Animals , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Diabetes Mellitus, Experimental/therapy , Mice, Inbred C57BL , Wound Healing
9.
Bioorg Med Chem ; 69: 116884, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35752145

ABSTRACT

Protein kinase N3 (PKN3), an AGC-family member, is often overexpressed in breast tumor cells. RNAi therapy is a promising approach to inhibit tumor growth by reducing the expression of PKN3. In this report, lipid nanoparticles encapsulated with new shRNA PKN3 (SS-LNP/shPKN3) with redox-responsiveness were developed in order to specifically down-regulate the expression of PKN3 for breast cancer treatment. The SS-LNP/shPKN3 was prepared by microfluidic method using disulfide bonds based ionizable lipid as main component. The as-prepared SS-LNP/shPKN3 lipid nanoparticles were characterized via using dynamic light scattering (DLS) and transmission electron microscopy (TEM). The results indicated that the obtained SS-LNP/shPKN3 exhibited uniform particle size and regular spherical morphology. Moreover, glutathione (GSH) triggered release of shPKN3 confirmed the redox-responsiveness of the SS-LNP/shPKN3. Finally, the anti-tumor effect of SS-LNP/shPKN3 was evaluated against MDA-MB-231 cells and derived xenograft tumor bearing mice. It was found that the SS-LNP/shPKN3-2 had the highest PKN3 protein inhibition rate of 60.8% and tumor inhibition rate of 62.3%. Taken together, the SS-LNP/shPKN3 might be a potential therapeutic strategy for breast cancer.


Subject(s)
Breast Neoplasms , Nanoparticles , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Female , Humans , Liposomes , Mice , Nanoparticles/chemistry , Protein Kinase C , RNA, Small Interfering/chemistry
10.
Mol Pharm ; 19(12): 4588-4600, 2022 12 05.
Article in English | MEDLINE | ID: mdl-35731922

ABSTRACT

Protein kinase N3 (PKN3), by virtue of its abnormal expression in prostate cells, has been widely used as a target of RNAi (shRNA, siRNA, miRNA) therapy. The major challenges of PKN3 RNAi therapy lie in how to design effective interference sequences and delivery systems. Herein, new PKN3 shRNA sequences (shPKN3-2459 and shPKN3-3357) were designed, and bioreducible, biodegradable, ionizable lipid-based nanoparticles were developed for shPKN3 delivery. First, an ionizable lipid (DDA-SS-DMA) bridged with disulfide bond and ester bonds was synthesized by a three-step reaction and confirmed by MS, 1H NMR, and 13C NMR. The ionizable lipid was mixed with cholesterol, DSPC, PEG-lipid, and shPKN3 by a microfluidic mixer to prepare lipid nanoparticles (LNP-shPKN3) which were characterized by DLS and TEM. Afterward, the pH and glutathione (GSH)-responsiveness of the DDA-SS-DMA based LNP delivery system were investigated by lysosome escape and gel electrophoresis assays. Compared with the commercial transfection reagent Lipo2000, the DDA-SS-DMA based delivery system showed higher transfection efficiency and lower toxicity. Western blot analysis, invasion tests, and migration assays were performed to evaluate the silencing effect of shPKN3 in vitro. In in vivo studies, high tumor suppression (65.8%) and treatment safety were evident in the LNP-shPKN3-2459 treatment group. Taken together, the DDA-SS-DMA based delivery system encapsulating shPKN3-2459 showed significant antitumor efficacy and might be a promising formulation for the treatment of prostate cancer.


Subject(s)
Nanoparticles , Prostatic Neoplasms , Humans , Male , Lipids/chemistry , Nanoparticles/chemistry , Prostate , Prostatic Neoplasms/genetics , Prostatic Neoplasms/therapy , RNA, Small Interfering
SELECTION OF CITATIONS
SEARCH DETAIL