Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Pharm Sin B ; 14(5): 2097-2118, 2024 May.
Article in English | MEDLINE | ID: mdl-38799640

ABSTRACT

Choline acetyltransferase (ChAT)-positive neurons in neural stem cell (NSC) niches can evoke adult neurogenesis (AN) and restore impaired brain function after injury, such as acute ischemic stroke (AIS). However, the relevant mechanism by which ChAT+ neurons develop in NSC niches is poorly understood. Our RNA-seq analysis revealed that dimethylarginine dimethylaminohydrolase 1 (DDAH1), a hydrolase for asymmetric NG,NG-dimethylarginine (ADMA), regulated genes responsible for the synthesis and transportation of acetylcholine (ACh) (Chat, Slc5a7 and Slc18a3) after stroke insult. The dual-luciferase reporter assay further suggested that DDAH1 controlled the activity of ChAT, possibly through hypoxia-inducible factor 1α (HIF-1α). KC7F2, an inhibitor of HIF-1α, abolished DDAH1-induced ChAT expression and suppressed neurogenesis. As expected, DDAH1 was clinically elevated in the blood of AIS patients and was positively correlated with AIS severity. By comparing the results among Ddah1 general knockout (KO) mice, transgenic (TG) mice and wild-type (WT) mice, we discovered that DDAH1 upregulated the proliferation and neural differentiation of NSCs in the subgranular zone (SGZ) under ischemic insult. As a result, DDAH1 may promote cognitive and motor function recovery against stroke impairment, while these neuroprotective effects are dramatically suppressed by NSC conditional knockout of Ddah1 in mice.

2.
Angew Chem Int Ed Engl ; : e202406417, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38712562

ABSTRACT

Responsive organic luminescent aggregates have a wide range of application fields, but currently there is still a lack of reasonable molecular design strategies. Introducing ion-π interactions into molecules can effectively alter their luminescent properties. However, current research typically focuses on ion localization at luminescent conjugated groups with the strong interaction forces. In this work, we introduce the flexible alkoxy chain spacers between fluorescent conjugated groups and ion-π interaction sites, and then adjust the fluorescence performance of the molecule by changing the strength of ion-π interactions. Bromine ion-based molecules with strong ion-π interactions exhibit high and stable fluorescence quantum yields in crystals and amorphous powders under the external stimuli. Hexafluorophosphate ion-based molecules with weak ion-π interactions have the high fluorescence quantum yield in crystals and very low fluorescence quantum yield in amorphous powders, showing variable fluorescence intensities under external stimuli. This demonstrates a new class of responsive organic luminescent solid-state materials.

3.
Proc Natl Acad Sci U S A ; 119(14): e2114432119, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35349339

ABSTRACT

SignificanceAtomic resolution transmission electron microscopy (TEM) has opened up a new era of molecular science by providing atomic video images of dynamic motions of single organic and inorganic molecules. However, the images often look different from the images of molecular models, because these models are designed to visualize the electronic properties of the molecule instead of nuclear electrostatic potentials that are felt by the e-beam in TEM imaging. Here, we propose a molecular model that reproduces TEM images using atomic radii correlated to atomic number (Z). The model serves to provide a priori a useful idea of how a single molecule, molecular assemblies, and thin crystals of organic or inorganic materials look in TEM.


Subject(s)
Electrons , Microscopy, Electron , Microscopy, Electron, Transmission
4.
Chem Commun (Camb) ; 56(84): 12785-12788, 2020 Oct 28.
Article in English | MEDLINE | ID: mdl-32966411

ABSTRACT

Cocrystallization of a lithium ion encapsulated fullerene Li+@C60 with a terbium(iii) phthalocyaninato porphyrinato double-decker single-molecule magnet [Tb(Pc)(OEP)] is reported. The cocrystal, containing PF6- as a counter anion, packs in a quasi-kagome lattice, which leads to intermolecular ferromagnetic interactions as well as the modulation of the single-molecule magnet (SMM) properties.

5.
Nat Commun ; 10(1): 3608, 2019 Aug 23.
Article in English | MEDLINE | ID: mdl-31444338

ABSTRACT

Chemical reactions in solution almost always take place via a series of minute intermediates that are often in rapid equilibrium with each other, and hence hardly characterizable at the level of atomistic molecular structures. We found that single-molecule atomic-resolution real-time electron microscopic (SMART-EM) video imaging provides a unique methodology for capturing and analyzing the minute reaction intermediates, as illustrated here for single prenucleation clusters (PNCs) in the reaction mixture of metal-organic frameworks (MOFs). Specifically, we found two different types of PNCs are involved in the formation of MOF-2 and MOF-5 from a mixture of zinc nitrate and benzene dicarboxylates at 95 °C and 120 °C, respectively. SMART-EM identified a small amount of 1-nm-sized cube and cube-like PNCs in the MOF-5 synthesis, but not in the MOF-2 synthesis. In the latter, we instead found only linear and square PNCs, suggesting that the MOF-2/-5 bifurcation takes place at the PNC stage.

6.
Chempluschem ; 84(3): 295-301, 2019 03.
Article in English | MEDLINE | ID: mdl-31950758

ABSTRACT

The preparation of a hierarchically assembled Ag nanostructures based on a nanocrystalline assembly was demonstrated using an Ag(I) complex of a dipeptide (AspDap). By heating under N2 gas, a spherical assembly of a nanocrystalline dipeptide-Ag(I) complex (diameter 4-5 µm), which has a morphology similar to the assembled structure of the dipeptide, was transformed to an assembly of Ag nanostructures, where the micrometre-order crystalline morphology was maintained. In addition, detailed scanning electron microscopy studies revealed that Ag nanoparticles (diameter ca. 10 nm) were formed on the surface of the Ag nanostructure. When the Ag(I) ions were reduced to Ag(0), this phenomenon exhibited surface dependence due to the anisotropic two-dimensional Ag(I) arrangement in the crystals. Thermogravimetric measurements and X-ray photoelectron spectroscopy revealed that the reduction proceeds in a stepwise manner around 200-250 °C, together with the removal of primary and secondary carboxylic groups in the dipeptide. Comparison with the heating process of the crystalline Ag(I) complex of ß-alanine indicated that stepwise reduction is key for maintaining the original micrometre-order morphology.


Subject(s)
Coordination Complexes/chemistry , Metal Nanoparticles/chemistry , Peptides/chemistry , Silver/chemistry , Coordination Complexes/chemical synthesis , Oxidation-Reduction , Peptides/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...