Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cells ; 42(7): 650-661, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38393294

ABSTRACT

Posttranslational modifications (PTMs) are crucial regulatory mechanisms for cellular differentiation and organismal development. Acylation modification is one of the main PTMs that plays a pivotal role in regulating the osteogenic differentiation of mesenchymal stem cells and is a focal point of research in bone tissue regeneration. However, its mechanism remains incompletely understood. This article aims to investigate the impact of protein crotonylation on osteogenic differentiation in periodontal ligament stem cells (PDLSCs) and elucidate its underlying mechanisms. Western blot analysis identified that the modification level of acetylation, crotonylation, and succinylation were significantly upregulated after osteogenic induction of PDLSCs. Subsequently, sodium crotonate (NaCr) was added to the medium and acyl-CoA synthetase short-chain family member 2 (ACSS2) was knocked down by short hairpin RNA plasmids to regulate the total level of protein crotonylation. The results indicated that treatment with NaCr promoted the expression of osteogenic differentiation-related factors in PDLSCs, whereas silencing ACSS2 had the opposite effect. In addition, mass spectrometry analysis was used to investigate the comprehensive analysis of proteome-wide crotonylation in PDLSCs under osteogenic differentiation. The analysis revealed that the level of protein crotonylation related to the PI3K-AKT signaling pathway was significantly upregulated in PDLSCs after osteogenic induction. Treatment with NaCr and silencing ACSS2 affected the activation of the PI3K-AKT signaling pathway. Collectively, our study demonstrates that protein crotonylation promotes osteogenic differentiation of PDLSCs via the PI3K-AKT pathway, providing a novel targeting therapeutic approach for bone tissue regeneration.


Subject(s)
Cell Differentiation , Osteogenesis , Periodontal Ligament , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Stem Cells , Periodontal Ligament/cytology , Periodontal Ligament/metabolism , Osteogenesis/drug effects , Humans , Cell Differentiation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Stem Cells/metabolism , Stem Cells/cytology , Protein Processing, Post-Translational
2.
Cell Prolif ; 57(7): e13612, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38348888

ABSTRACT

Ageing and cell senescence of mesenchymal stem cells (MSCs) limited their immunomodulation properties and therapeutic application. We previously reported that nucleosome assembly protein 1-like 2 (Nap1l2) contributes to MSCs senescence and osteogenic differentiation. Here, we sought to evaluate whether Nap1l2 impairs the immunomodulatory properties of MSCs and find a way to rescue the deficient properties. We demonstrated that metformin could rescue the impaired migration properties and T cell regulation properties of OE-Nap1l2 BMSCs. Moreover, metformin could improve the impaired therapeutic efficacy of OE-Nap1l2 BMSCs in the treatment of colitis and experimental autoimmune encephalomyelitis in mice. Mechanistically, metformin was capable of upregulating the activation of AMPK, synthesis of l-arginine and expression of inducible nitric oxide synthase in OE-Nap1l2 BMSCs, leading to an increasing level of nitric oxide. This study indicated that Nap1l2 negatively regulated the immunomodulatory properties of BMSCs and that the impaired functions could be rescued by metformin pretreatment via metabolic reprogramming. This strategy might serve as a practical therapeutic option to rescue impaired MSCs functions for further application.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Immunomodulation , Mesenchymal Stem Cells , Metformin , Mice, Inbred C57BL , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/cytology , Animals , Metformin/pharmacology , Mice , Immunomodulation/drug effects , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/immunology , Colitis/drug therapy , Colitis/metabolism , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide/metabolism , Cellular Reprogramming/drug effects , Cell Differentiation/drug effects , Cellular Senescence/drug effects , Cells, Cultured , Cell Movement/drug effects , Bone Marrow Cells/metabolism , Bone Marrow Cells/drug effects , Bone Marrow Cells/cytology , Metabolic Reprogramming
3.
Aging Cell ; 21(2): e13551, 2022 02.
Article in English | MEDLINE | ID: mdl-35032339

ABSTRACT

Senescence of bone marrow mesenchymal stem cells (BMSCs) impairs stemness and osteogenic differentiation, but the key regulators for senescence and the related osteogenesis are not well defined. Herein, we screened the gene expression profiles of human BMSCs from young and old donors and identified that elevation of the nucleosome assembly protein 1-like 2 (NAP1L2) expression was correlated with BMSC senescence and impaired osteogenesis. Elevated NAP1L2 expression was observed in replicative cell senescence and induced cell senescence in vitro, and in age-related senescent human and mouse BMSCs in vivo, concomitant with significantly augmented chromatin accessibility detected by ATAC-seq. Loss- and gain-of-functions of NAP1L2 affected activation of NF-κB pathway, status of histone 3 lysine 14 acetylation (H3K14ac), and chromatin accessibility on osteogenic genes in BMSCs. Mechanistic studies revealed that NAP1L2, a histone chaperone, recruited SIRT1 to deacetylate H3K14ac on promoters of osteogenic genes such as Runx2, Sp7, and Bglap and suppressed the osteogenic differentiation of BMSCs. Importantly, molecular docking analysis showed a possible bond between NAP1L2 and an anti-aging reagent, the nicotinamide mononucleotide (NMN), and indeed, administration of NMN alleviated senescent phenotypes of BMSCs. In vivo and clinical evidence from aging mice and patients with senile osteoporosis also confirmed that elevation of NAP1L2 expression was associated with suppressed osteoblastogenesis. Taken together, our findings suggest that NAP1L2 is a regulator of both BMSC cell senescence and osteogenic differentiation, and provide a new theoretical basis for aging-related disease.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Aging/genetics , Animals , Bone Marrow Cells/metabolism , Cell Differentiation , Cells, Cultured , Cellular Senescence/genetics , Humans , Mesenchymal Stem Cells/metabolism , Mice , Molecular Docking Simulation , Osteogenesis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...