Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Transl Med ; 10(469)2018 11 28.
Article in English | MEDLINE | ID: mdl-30487249

ABSTRACT

Peritoneal adhesions are fibrous tissues that tether organs to one another or to the peritoneal wall and are a major cause of postsurgical and infectious morbidity. The primary molecular chain of events leading to the initiation of adhesions has been elusive, chiefly due to the lack of an identifiable cell of origin. Using clonal analysis and lineage tracing, we have identified injured surface mesothelium expressing podoplanin (PDPN) and mesothelin (MSLN) as a primary instigator of peritoneal adhesions after surgery in mice. We demonstrate that an anti-MSLN antibody diminished adhesion formation in a mouse model where adhesions were induced by surgical ligation to form ischemic buttons and subsequent surgical abrasion of the peritoneum. RNA sequencing and bioinformatics analyses of mouse mesothelial cells from injured mesothelium revealed aspects of the pathological mechanism of adhesion development and yielded several potential regulators of this process. Specifically, we show that PDPN+MSLN+ mesothelium responded to hypoxia by early up-regulation of hypoxia-inducible factor 1 alpha (HIF1α) that preceded adhesion development. Inhibition of HIF1α with small molecules ameliorated the injury program in damaged mesothelium and was sufficient to diminish adhesion severity in a mouse model. Analyses of human adhesion tissue suggested that similar surface markers and signaling pathways may contribute to surgical adhesions in human patients.


Subject(s)
Antibodies/pharmacology , Biomarkers/metabolism , Epithelium/pathology , Tissue Adhesions/pathology , Animals , Cell Lineage/drug effects , Cell Proliferation/drug effects , Epithelium/drug effects , Epithelium/metabolism , Epithelium/ultrastructure , Gene Expression Regulation/drug effects , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mesothelin , Mice, Inbred BALB C , Mice, Inbred C57BL , Peritoneum/drug effects , Peritoneum/injuries , Peritoneum/pathology , Tissue Adhesions/genetics , Transcription, Genetic
2.
Proc Natl Acad Sci U S A ; 115(26): E5954-E5962, 2018 06 26.
Article in English | MEDLINE | ID: mdl-29891676

ABSTRACT

In the adult mouse spinal cord, the ependymal cell population that surrounds the central canal is thought to be a promising source of quiescent stem cells to treat spinal cord injury. Relatively little is known about the cellular origin of ependymal cells during spinal cord development, or the molecular mechanisms that regulate ependymal cells during adult homeostasis. Using genetic lineage tracing based on the Wnt target gene Axin2, we have characterized Wnt-responsive cells during spinal cord development. Our results revealed that Wnt-responsive progenitor cells are restricted to the dorsal midline throughout spinal cord development, which gives rise to dorsal ependymal cells in a spatially restricted pattern. This is contrary to previous reports that suggested an exclusively ventral origin of ependymal cells, suggesting that ependymal cells may retain positional identities in relation to their neural progenitors. Our results further demonstrated that in the postnatal and adult spinal cord, all ependymal cells express the Wnt/ß-catenin signaling target gene Axin2, as well as Wnt ligands. Genetic elimination of ß-catenin or inhibition of Wnt secretion in Axin2-expressing ependymal cells in vivo both resulted in impaired proliferation, indicating that Wnt/ß-catenin signaling promotes ependymal cell proliferation. These results demonstrate the continued importance of Wnt/ß-catenin signaling for both ependymal cell formation and regulation. By uncovering the molecular signals underlying the formation and regulation of spinal cord ependymal cells, our findings thus enable further targeting and manipulation of this promising source of quiescent stem cells for therapeutic interventions.


Subject(s)
Axin Protein/metabolism , Cell Proliferation , Neuroglia/metabolism , Spinal Cord/growth & development , Wnt Signaling Pathway/physiology , Animals , Axin Protein/genetics , Mice , Mice, Transgenic , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neuroglia/cytology , Spinal Cord/cytology , Wnt Proteins/genetics , Wnt Proteins/metabolism , beta Catenin/genetics , beta Catenin/metabolism
3.
Proc Natl Acad Sci U S A ; 114(14): 3654-3659, 2017 04 04.
Article in English | MEDLINE | ID: mdl-28330992

ABSTRACT

The regeneration of organ morphology and function following tissue loss is critical to restore normal physiology, yet few cases are documented in mammalian postnatal life. Partial hepatectomy of the adult mammalian liver activates compensatory hepatocyte hypertrophy and cell division across remaining lobes, resulting in restitution of organ mass but with permanent alteration of architecture. Here, we identify a time window in early postnatal life wherein partial amputation culminates in a localized regeneration instead of global hypertrophy and proliferation. Quantifications of liver mass, enzymatic activity, and immunohistochemistry demonstrate that damaged lobes underwent multilineage regeneration, reforming a lobe often indistinguishable from undamaged ones. Clonal analysis during regeneration reveals local clonal expansions of hepatocyte stem/progenitors at injured sites that are lineage but not fate restricted. Tetrachimeric mice show clonal selection occurs during development with further selections following injury. Surviving progenitors associate mainly with central veins, in a pattern of selection different from that of normal development. These results illuminate a previously unknown program of liver regeneration after acute injury and allow for exploration of latent regenerative programs with potential applications to adult liver regeneration.


Subject(s)
Liver Regeneration , Liver/cytology , Liver/surgery , Stem Cells/cytology , Animals , Animals, Newborn , Cell Division , Cell Lineage , Clone Cells , Liver/physiology , Mice , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...