Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Small Methods ; : e2400781, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970541

ABSTRACT

Wearable sensors designed for continuous, non-invasive monitoring of physicochemical signals are important for portable healthcare. Oxide field-effect transistor (FET)-type biosensors provide high sensitivity and scalability. However, they face challenges in mechanical flexibility, multiplexed sensing of different modules, and the absence of integrated on-site signal processing and wireless transmission functionalities for wearable sensing. In this work, a fully integrated wearable oxide FET-based biosensor array is developed to facilitate the multiplexed and simultaneous measurement of ion concentrations (H+, Na+, K+) and temperature. The FET-sensor array is achieved by utilizing a solution-processed ultrathin (≈6 nm thick) In2O3 active channel layer, exhibiting high compatibility with standard semiconductor technology, good mechanical flexibility, high uniformity, and low operational voltage of 0.005 V. This work provides an effective method to enable oxide FET-based biosensors for the fusion of multiplexed physicochemical information and wearable health monitoring applications.

2.
Adv Mater ; : e2403678, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38887824

ABSTRACT

Artificial spiking neurons capable of interpreting ionic information into electrical spikes are critical to mimic biological signaling systems. Mott memristors are attractive for constructing artificial spiking neurons due to their simple structure, low energy consumption, and rich neural dynamics. However, challenges remain in achieving ion-mediated spiking and biohybrid-interfacing in Mott neurons. Here, a biomimetic spiking chemical neuron (SCN) utilizing an NbOx Mott memristor and oxide field-effect transistor-type chemical sensor is introduced. The SCN exhibits both excitation and inhibition spiking behaviors toward ionic concentrations akin to biological neural systems. It demonstrates spiking responses across physiological and pathological Na+ concentrations (1-200 × 10-3 m). The Na+-mediated SCN enables both frequency encoding and time-to-first-spike coding schemes, illustrating the rich neural dynamics of Mott neuron. In addition, the SCN interfaced with L929 cells facilitates real-time modulation of ion-mediated spiking under both normal and salty cellular microenvironments.

3.
ACS Appl Mater Interfaces ; 14(11): 13480-13489, 2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35258923

ABSTRACT

In this work, quasi-spherical, small-sized, citrate-stabilized, core-shell (CS)-structured Au5.5@Agm nanoparticles (NPs) with Ag shells of controlled thicknesses (m = 0, 1.25, 3.25, and 5.25) were successfully synthesized by using Au NPs with sizes of 5.5 nm as seeds. The as-prepared Au@Ag NPs after the phase transfer process were further used for the fabrication of high-quality large-area monolayer films of hexagonal close-packed Au@Ag nanoparticles (LAMF-HCP-Au@Ag NPs) by our improved self-assembly at the interface of toluene-DEG containing a proper amount of water (10% v/v). Moreover, after transferring the as-prepared LAMF-HCP-Au@Ag NPs onto polydimethylsiloxane (PDMS) substrates (LAMF-HCP-Au@Ag NP@PDMS substrates), the resulting LAMF-HCP-Au@Ag NP@PDMS substrates can exhibit uniformity in the intensity of the surface-enhanced Raman scattering signals. Furthermore, taking LAMF-HCP-Au5.5@Ag5.25 NP@PDMS substrates as an example, they can achieve quantitative detection with high sensitivity for crystal violet (CV) and 4-aminothiophenol (4-ATP) in the range from 10-12 to 10-7 M and from 10-13 to 10-7 M, respectively. Also, their limit of detection (LOD) for CV and 4-ATP are 10-12 and 10-13 M, respectively. Especially, the LOD for CV can also be as low as 10-13 M by extending the immersing time.

4.
Nanoscale ; 13(35): 14925-14934, 2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34533157

ABSTRACT

In this work, macroscopical monolayer films of ordered arrays of gold nanoparticles (MMF-OA-Au NPs) are successfully prepared at the interfaces of toluene-diethylene glycol (DEG) with a water volume fraction of 10% (no more than 25%), which can greatly reduce the electrostatic repulsion among NPs during the self-assembly due to the quick transfer of the remaining citrate ions into the DEG solutions containing water. Thanks to the uniformity in the intensity of SERS signals, the as-prepared MMF-OA-Au NPs transferred onto polydimethylsiloxane (PDMS) as SERS substrates (MMF-OA-Au NP@PDMS) can achieve in situ quantitative detection of the analytes (such as crystal violet and malachite green) in aqueous solutions. Moreover, MMF-OA-Au NP@PDMS as SERS-based pH sensors can directly determine the pH value of the aqueous solution in the range of 3 to 10 by means of the established well-defined linear relationship with the intensity of the peak of νCOO- without any calibration, instead of the intensity ratio of the Raman peaks of νCOO- to ν8a with further calculation. In addition, the as-prepared SERS-based pH sensors can still have excellent long-term durability.

5.
Nanoscale ; 12(39): 20456-20466, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33026009

ABSTRACT

In this work, uniform ultra-small core-shell Au-Pt nanoparticles (denoted as USCS Au-Pt NPs) with Au-decorated Pt surfaces are successfully prepared by Fe(ii)-assisted one-pot co-reduction of Au(iii) ions and Pt(ii) ions in a citrate solution. The as-prepared USCS Au38.4@Au9.3Pt52.3 NPs have an average diameter of 2.3 ± 0.5 nm. It is found that the morphology, composition and size of Au-Pt NPs are highly dependent on the reaction conditions including the addition sequence of the precursors, and the concentrations of Fe(ii) ions, Au(iii) ions and Pt(ii) ions. In addition, USCS Au38.4@Au9.3Pt52.3-NP/C catalysts (USCS Au38.4@Au9.3Pt52.3 NPs loaded on the Vulcan XC-72R carbon black) exhibit excellent electrocatalytic performance towards the hydrogen evolution reaction (HER) and the oxygen reduction reaction (ORR) in acidic media due to the higher electrochemically active surface area (ECSA) and electronic effect between Pt and Au. For instance, USCS Au38.4@Au9.3Pt52.3-NP/C catalysts exhibited greatly enhanced HER activity in terms of overpotential (16 mV at a current density of -10 mA cm-2) and are better than commercial Pt/C catalysts (31 mV at a current density of -10 mA cm-2) reported in the literature thus far, to the best of our knowledge. Strikingly, their mass activity is about 13.1-fold higher than that of commercial Pt/C catalysts. Moreover, they also show an improved ORR activity, Eonset = 1.015 V and E1/2 = 0.896 V, which are positively shifted by nearly 28 mV and 21 mV than those of commercial Pt/C catalysts (0.987 V and 0.875 V), respectively. In addition, they also showed a higher kinetic current density (12.85 mA cm-2 at 0.85 V) and a better long-term durability. Our synthetic strategy presented here may be extended to the preparation of ultra-small Au-based bimetallic or multi-metallic NPs.

6.
ACS Appl Mater Interfaces ; 12(35): 39033-39042, 2020 Sep 02.
Article in English | MEDLINE | ID: mdl-32805847

ABSTRACT

In this work, a series of AuPNR6 - 50 aerogels with different percentages of {110} facets (from ∼12 to 36%) were controllably prepared and then used to investigate their performance (specific activity and long-term stability) toward ethylene glycol oxidation reaction (EGOR), in which PNR represents the particle number ratio of 6 nm Au NPs to 50 nm Au NPs. It is found that their specific activity and long-term stability highly depend on the sum of the percentage of the {100} and {111} facets and the percentage of {110} facets, respectively. In addition, Au246 - 50 aerogels with the highest percentage of {110} facets can possess excellent long-term stability (retaining about 95% of the initial current) but still have excellent specific activity (about 90.42 mA cm-2). Thus, the specific activity and long-time stability of AuPNR6 - 50 aerogels toward EGOR can be well balanced by controlling the proper percentage of {110} facets on their surfaces. Therefore, the successful fabrication of AuPNR6 - 50 aerogels with greatly improved long-term stability and excellent specific activity not only provides a novel method for the design of electrocatalysts but also would boost the commercial development of direct ethylene glycol fuel cells.

7.
Nanoscale ; 12(32): 16934-16943, 2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32776026

ABSTRACT

In this work, uniform and large gold nanoparticles (Au NPs) including quasi-spherical (QS) Au NPs with average diameters of 70 to 196 nm and trisoctahedral (TOH) Au NPs with average diameters of 140 to 195 nm were successfully synthesized by controlling the concentration of Cu2+ ions and the particle number of 3 nm Au-NP seeds, respectively, using a one-step seeded growth method with Cu2+-mediated Ostwald ripening. It is found that because of the concentration-dependent under-potential deposition of Cu2+ ions (CuUPD), 3 nm Au-NP seeds are firstly changed into Au NPs with a controlled QS- or TOH shape at the initial growth stage, followed by the conformal growth of Au atoms onto the initially formed Au NPs due to Cu2+-mediated Ostwald ripening, in which the extra Au atoms come from the dissolution of in situ Au nuclei by the unavoidable self-nucleation. Moreover, the as-prepared QS Au NPs with a rough surface exhibit a better SERS performance for physically adsorbed probes (crystal violet, CV) than the TOH Au NPs with sharp tips and with a comparable size. Furthermore, the as-prepared QS Au NPs can be used to distinguish nitrile and isonitrile groups by surface-enhanced Raman scattering (SERS) due to the presence of deformation twinnings. Thus, the as-prepared QS Au NPs with a rough surface and deformation twinnings can be further used as templates for the fabrication of bimetallic materials with multi-functionalities.

8.
J Mater Chem B ; 7(47): 7588-7598, 2019 12 21.
Article in English | MEDLINE | ID: mdl-31738358

ABSTRACT

In this work, a series of Au aerogels with exposed {110}-facets were successfully synthesized by Ostwald-ripening between two differently-sized gold nanoparticles (Au NPs). On the basis of the results of de-convoluting CV analysis and size variation of large Au NPs during their formation process, it is found that the size ratio (R) between two differently-sized Au NPs is crucial for the occurrence of surface reconstruction during the Ostwald-ripening process. Moreover, the R can be used to estimate the extent of surface reconstruction and the critical R for the occurrence of surface reconstruction in our case is about 5. Furthermore, Au6-50 aerogels with the highest ratio of {110}-facets (up to 35.5%) show excellent performance in glucose detection, and offer a short response time of 2 s, an ultrahigh sensitivity (2044.71 µA cm-2 mM-1) and the ultralow limit of detection (0.58 µM). In addition, they also exhibit good reproducibility and long-term durability. Therefore, our work provides a new way for the fabrication of Au aerogels with controlled ratios of facets by size-dependent surface reconstruction.


Subject(s)
Biosensing Techniques/methods , Gels/chemistry , Glucose/analysis , Gold/chemistry , Electrochemical Techniques , Limit of Detection , Metal Nanoparticles/chemistry , Reproducibility of Results , Surface Properties
9.
ACS Appl Mater Interfaces ; 11(19): 17637-17646, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30997986

ABSTRACT

In this work, we reported the synthesis of monodisperse, quasispherical Ag nanoparticles (NPs) with sizes of 40-300 nm by using ascorbic acid reduction of a silver-ammonia complex onto preformed, 23 nm Ag-NP seeds in the aqueous solution with an optimal pH of about 9.6 at room temperature. The as-prepared Ag NPs with such a large size span (from 40 to 300 nm) and high quality by one-pot seeded growth method are reported for the first time to the best of our knowledge. It is found that the key in the present seed-mediated growth method is to introduce a proper amount of ammonia water for the formation of a stable complex with a silver precursor (silver-ammonia complex) while maintaining the pH value of the growth solution simultaneously. By using rhodamine 6G molecules as probes, the surface-enhanced Raman scattering (SERS) activities of the as-prepared Ag NPs in ethanol solution are highly dependent on the sizes of Ag NPs at the fixed 633 nm laser and at the fixed particle number, which show a volcano-like curve. Moreover, 125 nm Ag NPs bear the largest SERS activity among them. Furthermore, Ag NPs with narrow distributions in shape and size (say, less than 10%) can achieve the uniformity and reproducibility of their SERS signals in solution; their relative standard deviations can be as low as 5% in space and temporal scale.

SELECTION OF CITATIONS
SEARCH DETAIL
...