Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Huan Jing Ke Xue ; 45(2): 920-928, 2024 Feb 08.
Article in Chinese | MEDLINE | ID: mdl-38471930

ABSTRACT

Coastal wetlands are important carbon sinks, and they contribute to reducing the effects of global warming. This study used the eddy covariance method to detect the CO2 flux in the restoration wetland of the Liaohe River estuary in 2021 and investigate the characteristics of ecosystem CO2 exchange and its environmental control factors. The aim was to assess the carbon source/sink capacity of salt marshes in the restored area and to provide data support and theoretical basis for evaluating the effectiveness of ecological restoration projects. The study revealed "U" curves in spring and autumn, "V" curves in summer, and horizontal lines in winter for the average daily variation curve of net ecosystem CO2 exchange (NEE) in the restored area. Its carbon sink efficiencies were -40.06, -63.62, 2.33, and 34.43 g·m-2 in the spring, summer, autumn, and winter, respectively. In the restored area, the daily cumulative variation in NEE was "V" shaped, and the monthly cumulative changes in NEE, ecosystem respiration (Reco), and gross primary productivity (GPP) were obviously different. Photosynthetically active radiation (PAR) was an important regulation factor of daytime NEE in the restored area in 2021, and they displayed a rectangular hyperbolic relationship. PAR could explain 53% of the variation in the daytime NEE. Air temperature (Ta) was the main control factor of Reco,night, and there was an exponential relationship between them. When Ta < 5.5 ℃, the temperature sensitivity of ecosystem respiration (Q10) was 2.19, and Ta could explain 42% of the variation in the Reco,night; when Ta ≥ 5.5 ℃, the Q10 was 1.81, and Ta could explain 51% of the variation in the Reco,night. Additionally, there were significant linear negative correlations between NEE and both soil water content (SWC) and vapor pressure deficit (VPD), whereas NEE was not significantly correlated with soil temperature (Ts) or relative humidity (RH). In 2021, the restored wetland in the Liaohe River estuary acted as a CO2 sink, and the total net carbon sequestration was -66.89 g·m-2. The restored salt plays a role as an important carbon sink and has long-term carbon sequestration potential.

2.
Ying Yong Sheng Tai Xue Bao ; 24(9): 2415-22, 2013 Sep.
Article in Chinese | MEDLINE | ID: mdl-24417096

ABSTRACT

By using eddy covariance technique, this paper measured the net ecosystem CO2 exchange (NEE) in a reed (Phragmites australis) wetland in the Yellow River Delta of China during the growth season of 2011, and investigated the variation patterns of the NEE and related affecting factors. The average diurnal variation of the NEE in different months showed a U-type curve, with the maximum net CO2 uptake rate and release rate being (0.44 +/- 0.03) and (0.16 +/- 0.01) mg CO2 x m(-2) x s(-1), respectively. The NEE, ecosystem respiration (R(eco)), and gross primary productivity (GPP) were all higher in vigorous growth season (from July to September) and lower in early growth season (from May to June) and late growth season (from October to November). Both R(eco) and NEE reached their maximum values in August, while GPP reached its peak value in July. During the growth season, the ecosystem CO2 exchange was mainly dominated by photosynthetic active radiation (PAR), soil temperature (T(s)), and soil water content (SWC). There was a rectangular hyperbolic relationship between the daytime NEE and PAR. The nighttime ecosystem respiration (R(eco,n)) was exponentially correlated with the T(s) at 5 cm depth, and the temperature sensitivity of the ecosystem respiration (Q10) was 2.30. SWC and T(s) were the main factors affecting the R(eco,n). During the entire growth season, the reed wetland ecosystem in the Yellow River delta was an obvious carbon sink, with the total net carbon sequestration being 780.95 g CO2 x m(-2).


Subject(s)
Carbon Dioxide/metabolism , Photosynthesis/physiology , Poaceae/physiology , Wetlands , China , Poaceae/growth & development , Rivers
SELECTION OF CITATIONS
SEARCH DETAIL
...