Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Entropy (Basel) ; 25(1)2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36673214

ABSTRACT

By their unique compositions and microstructures, recently developed high-entropy materials (HEMs) exhibit outstanding properties and performance above the threshold of traditional materials. Wear- and erosion-resistant materials are of significant interest for different applications, such as industrial devices, aerospace materials, and military equipment, related to their capability to tolerate heavy loads during sliding, rolling, or impact events. The high-entropy effect and crystal lattice distortion are attributed to higher hardness and yield stress, promoting increased wear and erosion resistance in HEMs. In addition, HEMs have higher defect formation/migration energies that inhibit the formation of defect clusters, making them resistant to structural damage after radiation. Hence, they are sought after in the nuclear and aerospace industries. The concept of high-entropy, applied to protective materials, has enhanced the properties and performance of HEMs. Therefore, they are viable candidates for today's demanding protective materials for wear, erosion, and irradiation applications.

2.
Entropy (Basel) ; 21(4)2019 Apr 13.
Article in English | MEDLINE | ID: mdl-33267110

ABSTRACT

In this study, we designed and fabricated NbTiAlSiZrNx high-entropy alloy (HEA) films. The parameters of the radio frequency (RF) pulse magnetron sputtering process were fixed to maintain the N2 flux ratio at 0%, 10%, 20%, 30%, 40%, and 50%. Subsequently, NbTiAlSiZrNx HEA films were deposited on the 304 stainless steel (SS) substrate. With an increasing N2 flow rate, the film deposited at a RN of 50% had the highest hardness (12.4 GPa), the highest modulus (169 GPa), a small roughness, and a beautiful color. The thicknesses of the films were gradually reduced from 298.8 nm to 200 nm, and all the thin films were of amorphous structure. The electrochemical corrosion resistance of the film in a 0.5 mol/L H2SO4 solution at room temperature was studied and the characteristics changed. The HEA films prepared at N2 flow rates of 10% and 30% were more prone to corrosion than 304 SS, but the corrosion rate was lower than that of 304 SS. NbTiAlSiZrNx HEA films prepared at N2 flow rates of 20%, 40%, and 50% were more corrosion-resistant than 304 SS. In addition, the passivation stability of the NbTiAlSiZrNx HEA was worse than that of 304 SS. Altogether, these results show that pitting corrosion occurred on NbTiAlSiZrNx HEA films.

3.
ACS Comb Sci ; 20(11): 602-610, 2018 11 12.
Article in English | MEDLINE | ID: mdl-30350567

ABSTRACT

The properties and microstructure of (Cr, Fe, V)-(Ta, W) high-entropy films (HEFs) are studied using combinatorial strategies. The compositional library of (Cr0.33Fe0.33V0.33) x(Ta0.5W0.5)100- x, (0 < x < 100), HEFs are fabricated by cosputtering to discover potential photothermal conversion materials. By verifying points in the compositional library, the structure and property variation according to the atomic content of elements are carefully studied. Results indicate that the films exhibit an amorphous structure when x ranges from 86.9 to 32.5, and high concentrations of Ta and W lead to the formation of a BCC structure in the films. The solar absorptivity of the films peaks at the transitional area from an amorphous to BCC structure. Our research provides an efficient combinatorial technique to discover HEFs with high performance.


Subject(s)
Alloys/chemistry , Small Molecule Libraries/chemistry , Solar Energy , Chromium/chemistry , High-Throughput Screening Assays , Hot Temperature , Iron/chemistry , Light , Photochemical Processes , Tantalum/chemistry , Tungsten/chemistry , Vanadium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...