Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Aging Dis ; 13(6): 1615-1632, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36465180

ABSTRACT

Non-small cell lung cancer (NSCLC) is a serious threat to the health of older adults. Despite the significant progress in immunotherapy, effective treatments for NSCLC remain limited. The development of tumors indicates failure in immune surveillance and the successful immune escape of tumor cells. Research on the tumor immune microenvironment (TIME) revealed these opposing immune processes and contributed to the discovery of new methods to suppress the immune escape and restore the immune surveillance functions. This paper aimed to provide updates on the current findings regarding the relevance of TIME in NSCLC treatment. It also aimed to introduce the TIME, immune editing, cancer immunotherapy, and new challenges. Based on the clinical data, the combination of neoadjuvant chemotherapy and immune checkpoint inhibitor (ICI) therapy is suitable for patients with NSCLC who are not eligible to undergo surgery. Combined ICI therapy after epidermal growth factor receptor (EGFR)/tyrosine kinase inhibitor (TKI) therapy should be considered in patients with EGFR mutations. Chemoradiotherapy may increase the density of CD8+ lymphocytes, which is significantly associated with better prognosis. For older patients and those with advanced-stage disease, regional tumor treatments, such as stereotactic radiation therapy and percutaneous cryoablation, may be more suitable, but further studies are needed to confirm this. In conclusion, restoring immune surveillance is as important as removing cancerous tissues; further studies that include the use of combined treatment methods, individualized treatment plans, and immunonutrition are warranted.

2.
Biosci Rep ; 40(9)2020 09 30.
Article in English | MEDLINE | ID: mdl-32812032

ABSTRACT

Irinotecan (CPT11) is one of the most effective drugs for treating colon cancer, but its severe side effects limit its application. Recently, a traditional Chinese herbal preparation, named PHY906, has been proved to be effective for improving therapeutic effect and reducing side effects of CPT11. The aim of the present study was to provide novel insight to understand the molecular mechanism underlying PHY906-CPT11 intervention of colon cancer. Based on the GSE25192 dataset, for different three treatments (PHY906, CPT11, and PHY906-CPT11), we screened out differentially expressed genes (DEGs) and constructed a co-expression network by weighted gene co-expression network analysis (WGCNA) to identify hub genes. The key genes of the three treatments were obtained by merging the DEGs and hub genes. For the PHY906-CPT11 treatment, a total of 18 key genes including Eif4e, Prr15, Anxa2, Ddx5, Tardbp, Skint5, Prss12 and Hnrnpa3, were identified. The results of functional enrichment analysis indicated that the key genes associated with PHY906-CPT11 treatment were mainly enriched in 'superoxide anion generation' and 'complement and coagulation cascades'. Finally, we validated the key genes by Gene Expression Profiling Interactive Analysis (GEPIA) and RT-PCR analysis, the results indicated that EIF4E, PRR15, ANXA2, HNRNPA3, NCF1, C3AR1, PFDN2, RGS10, GNG11, and TMSB4X might play an important role in the treatment of colon cancer with PHY906-CPT11. In conclusion, a total of 18 key genes were identified in the present study. These genes showed strong correlation with PHY906-CPT11 treatment in colon cancer, which may help elucidate the underlying molecular mechanism of PHY906-CPT11 treatment in colon cancer.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Gene Expression Regulation, Neoplastic/drug effects , Animals , Cell Line, Tumor , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacology , Gene Ontology , Humans , Irinotecan/administration & dosage , Irinotecan/pharmacology , Mice , Oligonucleotide Array Sequence Analysis , Reproducibility of Results , Transcription Factors/genetics , Xenograft Model Antitumor Assays
3.
J Expo Sci Environ Epidemiol ; 20(7): 634-43, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20664650

ABSTRACT

Blood lead concentrations are higher in young children than in other age groups, whereas little is known regarding concentrations of other metals in young children. We measured the concentrations of a suite of metals in the blood of children 1-6 years of age, and assessed potential differences by age, season, or region of Maine. We used blood submitted to the Maine State Health and Environmental Testing Laboratory for blood lead analysis to determine the concentrations of arsenic (As), antimony (Sb), cadmium (Cd), manganese (Mn), mercury (Hg), selenium (Se), tin (Sn), and uranium (U) in 1350 children 1-6 years of age. The essential metals Mn and Se were detected in all samples, and As and Sb were detected in >90% of samples. Hg was detected in approximately 60% of samples. U and Cd were less often detected in blood samples, at approximately 30% and 10% of samples, respectively. Sn was not detected in any sample. Concentrations of As, Hg, and Se increased with age, whereas Sb decreased with age. Concentrations also varied by season and region for some though not all metals. Significant pairwise correlations were observed for a number of metals. Blood is a reasonable compartment for measurement of most of these metals in young children. The use of convenience samples provided a cost-effective mechanism for assessing exposure of young children in Maine.


Subject(s)
Metals/blood , Age Factors , Antimony/blood , Arsenic/blood , Cadmium/blood , Child , Child, Preschool , Environmental Exposure/statistics & numerical data , Female , Humans , Infant , Lead/blood , Maine , Male , Manganese/blood , Mercury/blood , Seasons , Selenium/blood , Tin/blood , Uranium/blood
4.
Aging Cell ; 8(3): 277-87, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19627267

ABSTRACT

To better characterize aging in mice, the Jackson Aging Center carried out a lifespan study of 31 genetically-diverse inbred mouse strains housed in a specific pathogen-free facility. Clinical assessments were carried out every 6 months, measuring multiple age-related phenotypes including neuromuscular, kidney and heart function, body composition, bone density, hematology, hormonal levels, and immune system parameters. In a concurrent cross-sectional study of the same 31 strains at 6, 12, and 20 months, more invasive measurements were carried out followed by necropsy to assess apoptosis, DNA repair, chromosome fragility, and histopathology. In this report, which is the initial paper of a series, the study design, median lifespans, and circulating insulin-like growth factor 1 (IGF1) levels at 6, 12, and 18 months are described for the first cohort of 32 females and 32 males of each strain. Survival curves varied dramatically among strains with the median lifespans ranging from 251 to 964 days. Plasma IGF1 levels, which also varied considerably at each time point, showed an inverse correlation with a median lifespan at 6 months (R = -0.33, P = 0.01). This correlation became stronger if the short-lived strains with a median lifespan < 600 days were removed from the analysis (R = -0.53, P < 0.01). These results support the hypothesis that the IGF1 pathway plays a key role in regulating longevity in mice and indicates that common genetic mechanisms may exist for regulating IGF1 levels and lifespan.


Subject(s)
Insulin-Like Growth Factor I/analysis , Longevity , Animals , Female , Male , Mice , Mice, Inbred Strains , Research Design , Survival Analysis
5.
Am J Physiol Heart Circ Physiol ; 296(6): H1907-13, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19395551

ABSTRACT

Understanding the genetic influence on ECG time intervals and heart rate (HR) is important for identifying the genes underlying susceptibility to cardiac arrhythmias. The objective of this study was to determine the genetic influence on ECG parameters and their age-related changes in mice. ECGs were recorded in lead I on 8 males and 8 females from each of 28 inbred strains at the ages of 6, 12, and 18 mo. Significant interstrain differences in the P-R interval, QRS complex duration, and HR were found. Age-related changes in the P-R interval, QRS complex duration, and HR differed among strains. The P-R interval increased with age in 129S1/SvlmJ females. The QRS complex duration decreased with age in C57BR/J males and DBA2/J females but increased in NON/ShiLtJ females. HR decreased in C57L/J females and SM/J and P/J males but increased in BALB/cByJ males. Differences between males and females were found for HR in SJL/J mice and in the P-R interval in 129S1/SvlmJ mice. Broad-sense heritability estimates of ECG time intervals and HR ranged from 0.31 for the QRS complex duration to 0.52 for the P-R interval. Heritability estimates decreased with age for the P-R interval. Our study revealed that genetic factors play a significant role on cardiac conduction activity and age-related changes in ECG time intervals and HR.


Subject(s)
Aging/genetics , Arrhythmias, Cardiac/genetics , Electrocardiography , Heart Conduction System/physiology , Heart Rate/genetics , Animals , Arrhythmias, Cardiac/diagnosis , Female , Male , Mice , Mice, Inbred A , Mice, Inbred AKR , Mice, Inbred BALB C , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Inbred NOD , Phenotype , Sex Characteristics , Species Specificity
6.
Physiol Behav ; 96(2): 350-61, 2009 Feb 16.
Article in English | MEDLINE | ID: mdl-19027767

ABSTRACT

The use of a treadmill to gather data for gait analysis in mice is a convenient, sensitive method to evaluate motor performance. However, evidence from several species, including mice, shows that treadmill locomotion is a novel task that is not equivalent to over ground locomotion and that may be particularly sensitive to the test environment and protocol. We investigated the effects of age, genetic background and repeated trials on treadmill walking in mice and show that these factors are important considerations in the interpretation of gait data. Specifically we report that as C57BL/6J (B6) mice age, the animals use progressively longer, less frequent strides to maintain the same walking speed. The increase is most rapid between 1 and 6 months of age and is explained, in part, by changes in size and weight. We also extended previous findings showing that repeat trials cause mice to modify their treadmill gait pattern. In a second trial B6 mice consistently walk with a shorter swing phase and greater duty factor. Also, with the shortest retest interval (3 min) mice use shorter more frequent steps but the response varies with the number and timing of trials. Finally, we compared the gait pattern of an additional seven inbred strains of mice and found significant variation in the length and frequency of strides used to maintain the same walking speed. The combined results offer the bases for further mechanistic studies and can be used to guide optimal experimental design.


Subject(s)
Aging/physiology , Exercise Test/methods , Learning/physiology , Locomotion/genetics , Age Factors , Animals , Female , Male , Mice , Mice, Inbred Strains , Posture/physiology , Species Specificity
7.
PLoS Med ; 3(8): e272, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16933957

ABSTRACT

BACKGROUND: Large quantities of smallpox vaccine have been stockpiled to protect entire nations against a possible reintroduction of smallpox. Planning for an appropriate use of these stockpiled vaccines in response to a smallpox outbreak requires a rational assessment of the risks of vaccination-related adverse events, compared to the risk of contracting an infection. Although considerable effort has been made to understand the dynamics of smallpox transmission in modern societies, little attention has been paid to estimating the frequency of adverse events due to smallpox vaccination. Studies exploring the consequences of smallpox vaccination strategies have commonly used a frequency of approximately one death per million vaccinations, which is based on a study of vaccination with the New York City Board of Health (NYCBH) strain of vaccinia virus. However, a multitude of historical studies of smallpox vaccination with other vaccinia strains suggest that there are strain-related differences in the frequency of adverse events after vaccination. Because many countries have stockpiled vaccine based on the Lister strain of vaccinia virus, a quantitative evaluation of the adverse effects of such vaccines is essential for emergency response planning. We conducted a systematic review and statistical analysis of historical data concerning vaccination against smallpox with different strains of vaccinia virus. METHODS AND FINDINGS: We analyzed historical vaccination data extracted from the literature. We extracted data on the frequency of postvaccinal encephalitis and death with respect to vaccinia strain and age of vaccinees. Using a hierarchical Bayesian approach for meta-analysis, we estimated the expected frequencies of postvaccinal encephalitis and death with respect to age at vaccination for smallpox vaccines based on the NYCBH and Lister vaccinia strains. We found large heterogeneity between findings from different studies and a time-period effect that showed decreasing incidences of adverse events over several decades. To estimate death rates, we then restricted our analysis to more-recent studies. We estimated that vaccination with the NYCBH strain leads to an average of 1.4 deaths per million vaccinations (95% credible interval, 0-6) and that vaccination with Lister vaccine leads to an average of 8.4 deaths per million vaccinations (95% credible interval, 0-31). We combined age-dependent estimates of the frequency of death after vaccination and revaccination with demographic data to obtain estimates of the expected number of deaths in present societies due to vaccination with the NYCBH and Lister vaccinia strains. CONCLUSIONS: Previous analyses of smallpox vaccination policies, which rely on the commonly assumed value of one death per million vaccinations, may give serious underestimates of the number of deaths resulting from vaccination. Moreover, because there are large, strain-dependent differences in the frequency of adverse events due to smallpox vaccination, it is difficult to extrapolate from predictions for the NYCBH-derived vaccines (stockpiled in countries such as the US) to predictions for the Lister-derived vaccines (stockpiled in countries such as Germany). In planning for an effective response to a possible smallpox outbreak, public-health decision makers should reconsider their strategies of when to opt for ring vaccination and when to opt for mass vaccination.


Subject(s)
Mass Vaccination/adverse effects , Vaccination/adverse effects , Vaccinia virus/classification , Vaccinia virus/immunology , Age Distribution , Disaster Planning , Encephalomyelitis, Acute Disseminated/epidemiology , Humans , Incidence , Mass Vaccination/mortality , Risk Assessment , Vaccination/mortality
SELECTION OF CITATIONS
SEARCH DETAIL
...