Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 5991, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37752133

ABSTRACT

The recent report of near-ambient superconductivity and associated color changes in pressurized nitrogen doped lutetium hydride has triggered worldwide interest and raised major questions about the nature and underlying physics of these latest claims. Here we report synthesis and characterization of high-purity nitrogen doped lutetium hydride LuH2±xNy. We find that pressure conditions have notable effects on Lu-N and Lu-NH chemical bonding and the color changes likely stem from pressure-induced electron redistribution of nitrogen/vacancies and interaction with the LuH2 framework. No superconducting transition is found in all the phases at temperatures 1.8-300 K and pressures 0-38 GPa. Instead, we identify a notable temperature-induced resistance anomaly of electronic origin in LuH2±xNy, which is most pronounced in the pink phase and may have been erroneously interpreted as a sign of superconducting transition. This work establishes key benchmarks for nitrogen doped lutetium hydrides, allowing an in-depth understanding of its novel pressure-induced phase changes.

2.
J Phys Chem Lett ; 13(40): 9404-9410, 2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36191043

ABSTRACT

The importance of electronic structure evolutions and reconstitutions is widely acknowledged for strongly correlated systems. The precise effect of pressurized Fermi surface topology on metallization and superconductivity is a much-debated topic. In this work, an evolution from insulating to metallic behavior, followed by a superconducting transition, is systematically investigated in SnS2 under high pressure. In-situ X-ray diffraction measurements show the stability of the trigonal structure under compression. Interestingly, a Lifshitz transition, which has an important bearing on the metallization and superconductivity, is identified by the first-principles calculations between 35 and 40 GPa. Our findings provide a unique playground for exploring the relationship of electronic structure, metallization, and superconductivity under high pressure without crystal structural collapse.

3.
Materials (Basel) ; 15(3)2022 Jan 29.
Article in English | MEDLINE | ID: mdl-35161023

ABSTRACT

A microwave technique suitable for investigating the AC magnetic susceptibility of small samples in the GHz frequency range is presented. The method-which is based on the use of a coplanar waveguide resonator, within the resonator perturbation approach-allows one to obtain the absolute value of the complex susceptibility, from which the penetration depth and the superfluid density can be determined. We report on the characterization of several iron-based superconducting systems, belonging to the 11, 122, 1144, and 12442 families. In particular, we show the effect of different kinds of doping for the 122 family, and the effect of proton irradiation in a 122 compound. Finally, the paradigmatic case of the magnetic superconductor EuP-122 is discussed, since it shows the emergence of both superconducting and ferromagnetic transitions, marked by clear features in both the real and imaginary parts of the AC susceptibility.

4.
Phys Rev Lett ; 123(2): 027002, 2019 Jul 12.
Article in English | MEDLINE | ID: mdl-31386520

ABSTRACT

In the electronic nematic state, an electronic system has a lower symmetry than the crystal structure of the same system. Electronic nematic states have been observed in various unconventional superconductors such as cuprate, iron-based, heavy-fermion, and topological superconductors. The relation between nematicity and superconductivity is a major unsolved problem in condensed matter physics. By angle-resolved specific heat measurements, we report bulk quasiparticle evidence of nematicity in the topological superconductor Sr_{x}Bi_{2}Se_{3}. The specific heat exhibited a clear twofold symmetry despite the threefold symmetric lattice. Most importantly, the twofold symmetry appeared in the normal state above the superconducting transition temperature. This is explained by the angle-dependent Zeeman effect due to the anisotropic density of states in the nematic phase. Such results highlight the interrelation between nematicity and unconventional superconductivity.

5.
Proc Natl Acad Sci U S A ; 115(6): 1227-1231, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29363600

ABSTRACT

The emergence of the nematic electronic state that breaks rotational symmetry is one of the most fascinating properties of the iron-based superconductors, and has relevance to cuprates as well. FeSe has a unique ground state in which superconductivity coexists with a nematic order without long-range magnetic ordering, providing a significant opportunity to investigate the role of nematicity in the superconducting pairing interaction. Here, to reveal how the superconducting gap evolves with nematicity, we measure the thermal conductivity and specific heat of FeSe1 - x S x , in which the nematicity is suppressed by isoelectronic sulfur substitution and a nematic critical point (NCP) appears at [Formula: see text] We find that, in the whole nematic regime ([Formula: see text]), the field dependence of two quantities consistently shows two-gap behavior; one gap is small but highly anisotropic with deep minima or line nodes, and the other is larger and more isotropic. In stark contrast, in the tetragonal regime ([Formula: see text]), the larger gap becomes strongly anisotropic, demonstrating an abrupt change in the superconducting gap structure at the NCP. Near the NCP, charge fluctuations of [Formula: see text] and [Formula: see text] orbitals are enhanced equally in the tetragonal side, whereas they develop differently in the orthorhombic side. Our observation therefore directly implies that the orbital-dependent nature of the nematic fluctuations has a strong impact on the superconducting gap structure and hence on the pairing interaction.

6.
J Phys Condens Matter ; 30(2): 025701, 2018 01 17.
Article in English | MEDLINE | ID: mdl-29214979

ABSTRACT

We report a study of angular-dependent magnetoresistance (AMR) with the magnetic field rotated in the plane perpendicular to the current on a Ca0.73La0.27FeAs2 single crystal, which is regarded as a 'parent' compound of 112-type iron pnictide superconductors. A pronounced AMR with twofold symmetry is observed, signifying the highly anisotropic Fermi surface. By further analyzing the AMR data, we find that the Fermi surface above the structural/antiferromagnetic (AFM) transition (T s/T N) is quasi-two-dimensional (quasi-2D), as revealed by the 2D scaling behavior of the AMR, Δρ/ρ(0) (H, θ) = Δρ/ρ(0) (µ 0 Hcosθ), θ being the magnetic field angle with respect to the c axis. While such 2D scaling becomes invalid at temperatures below T s/T N, the three-dimensional (3D) scaling approach by inclusion of the anisotropy of the Fermi surface is efficient, indicating that the appearance of the 3D Fermi surface contributes to anisotropic electronic transport. Compared with other experimental observations, we suspect that the additional 3D hole pocket (generated by the Ca d orbital and As1 p z orbital) around the Γ point in CaFeAs2 will disappear in the heavily electron doped regime, and moreover, the Fermi surface should be reconstructed across the structural/AFM transition. Besides, a quasi-linear in-plane magnetoresistance with H//ab is observed at low temperatures and its possible origins are also discussed. Our results provide more information to further understand the electronic structure of 112-type IBSs.

7.
Sci Rep ; 7: 45943, 2017 04 06.
Article in English | MEDLINE | ID: mdl-28383529

ABSTRACT

The temperature dependence of upper critical field µ0Hc2 of Ca0.83La0.17FeAs2 and Ca0.8La0.2Fe0.98Co0.02As2 single crystals are investigated by measuring the resistivity for the inter-plane (H//c) and in-plane (H//ab) directions in magnetic fields up to 60 T. It is found that µ0Hc2(T) of both crystals for H//c presents a sublinear temperature dependence with decreasing temperature, whereas the curve of µ0Hc2(T) for H//ab has a convex curvature and gradually tends to saturate at low temperatures. µ0Hc2(T) in both crystals deviates from the conventional Werthamer-Helfand-Hohenberg (WHH) theoretical model without considering spin paramagnetic effect for H//c and H//ab directions. Detailed analyses show that the behavior of µ0Hc2(T) in 112-type Iron-based superconductors (IBSs) is similar to that of most IBSs. Two-band model is required to fully reproduce the behavior of µ0Hc2(T) for H//c, while the effect of spin paramagnetic effect is responsible for the behavior of µ0Hc2(T) for H//ab.

8.
Sci Rep ; 6: 22278, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-26947572

ABSTRACT

Investigation of vortex pinning and its relaxation is of great importance for both basic physics and technological applications in the field of superconductivity. We report a great improvement of superconducting properties in the recently discovered 112-type superconductors (Ca, La)FeAs2 through Co co-doping. High critical current density Js(5 K) > 2(*)10(6) A/cm(2) is obtained and pronounced second peak effect is observed in magnetization hysteresis loops. Both the dynamic and static relaxation studies result in comparable and sizable relaxation rates S or Q, indicating a fast vortex creep. The second magnetization peak (SMP) is found to be strongly associated with a crossover from elastic to plastic vortex creep. Above the crossover, plastic vortex creep governs the vortex dynamics in a wide range of temperatures and fields. A good scaling behavior of the normalized pinning force density fp by formula fp = h(p)(1-h)(q) ((p) = 1.44, q = 1.66, h = 0.44) is revealed, which demonstrates an important contribution from core normal point-like pinning sites. To better understand the SMP phenomenon, we discuss the related physical scenario as well as the affecting factors in the SMP occurrence.

SELECTION OF CITATIONS
SEARCH DETAIL
...