Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Oncol ; 12: 882372, 2022.
Article in English | MEDLINE | ID: mdl-35692750

ABSTRACT

Recently, the role of lncRNAs in tumorigenesis and development has received increasing attention, but the mechanism underlying lncRNAs-mediated tumor growth in the hypoxic microenvironment of solid tumors remains obscure. Using RNA sequencing, 25 hypoxia-related lncRNAs were found to be upregulated in HCC, of which lncRNA USP2-AS1 were significantly increased under hypoxia. We further confirmed that USP2-AS1 was significantly upregulated in liver cancer using FISH assay and that USP2-AS1 was associated with advanced liver cancer and increased tumor size. Furthermore, overexpression of USP2-AS1 under hypoxia dramatically increased HCC proliferation and clone formation, whereas the opposite results were observed after USP2-AS1 knockdown. We also found that overexpression of USP2-AS1 increased migration and invasion of HCC cells, while USP2-AS1 knockdown led to the opposite effect. In addition, USP2-AS1 knockdown can increase the efficacy of lenvatinib in our mice tumor xenograft model. Our findings also suggest that USP2-AS1 could increase the protein level of HIF1α by enhancing YBX1 protein binding to HIF1α mRNA under hypoxia and the therapeutic effect of lenvatinib can be enhanced by combination with HIF1α inhibitors in liver cancer.

2.
Cancer Lett ; 541: 215750, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35609735

ABSTRACT

Immune checkpoint blockade (ICB) therapy is an important treatment option for individuals with cancer, but it has certain limitations. Identifying a better target that can overcome tumor immune escape and stimulate T cell activity is critical. This research aimed to delve into the molecular mechanism underlying the immunoregulatory function of metadherin (MTDH), which is a novel and potential therapeutic target in hepatocellular cancer (HCC). A small interfering RNA library was screened using the luciferase reporter assay and PD-L1 promoter. The Cancer Genome Atlas database and HCC tissues were used to investigate the relationship between MTDH and PD-L1. The association between MTDH and ß-catenin/lymphoid enhancer binding factor (LEF-1) was discovered by co-immunoprecipitation. The chromatin immunoprecipitation assay was used to investigate the interaction of MTDH with the PD-L1 promoter when LEF-1 expression was silenced. Locked nucleic acid antisense oligonucleotides (ASOs) were used to inhibit MTDH. We utilized in vitro co-cultures and in vivo syngeneic tumor development experiments to confirm the effectiveness of MTDH ASO combined with PD-1 monoclonal antibody (mAb). MTDH was demonstrated to be a PD-L1 modulator. MTDH increased PD-L1 expression and upregulated PD-L1 transcriptional activity through ß-catenin/LEF-1 signaling. More importantly, MTDH ASO improved the anti-PD-1 response and increased cytotoxic T-cell infiltration in PD-1 mAb-treated malignancies. MTDH effectively predicts the therapeutic efficacy of ICB therapy. Our results imply that combining MTDH ASO with PD-1 mAb could be a promising therapeutic strategy for HCC. In addition, MTDH is a potential novel biomarker for predicting the effectiveness of immune checkpoint inhibitor treatment.


Subject(s)
Antibodies, Monoclonal , B7-H1 Antigen , Carcinoma, Hepatocellular , Immune Checkpoint Inhibitors , Liver Neoplasms , Membrane Proteins , Oligonucleotides, Antisense , RNA-Binding Proteins , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/genetics , B7-H1 Antigen/immunology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/immunology , Cell Line, Tumor , Humans , Immune Checkpoint Inhibitors/pharmacology , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/immunology , Membrane Proteins/genetics , Membrane Proteins/immunology , Oligonucleotides, Antisense/immunology , Programmed Cell Death 1 Receptor/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/immunology , Tumor Microenvironment , beta Catenin/genetics , beta Catenin/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...