Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Cancer Cell ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38788719

ABSTRACT

Glioblastomas (GBM) are incurable central nervous system (CNS) cancers characterized by substantial myeloid cell infiltration. Whether myeloid cell-directed therapeutic targets identified in peripheral non-CNS cancers are applicable to GBM requires further study. Here, we identify that the critical immunosuppressive target in peripheral cancers, triggering receptor expressed on myeloid cells-2 (TREM2), is immunoprotective in GBM. Genetic or pharmacological TREM2 deficiency promotes GBM progression in vivo. Single-cell and spatial sequencing reveals downregulated TREM2 in GBM-infiltrated myeloid cells. TREM2 negatively correlates with immunosuppressive myeloid and T cell exhaustion signatures in GBM. We further demonstrate that during GBM progression, CNS-enriched sphingolipids bind TREM2 on myeloid cells and elicit antitumor responses. Clinically, high TREM2 expression in myeloid cells correlates with better survival in GBM. Adeno-associated virus-mediated TREM2 overexpression impedes GBM progression and synergizes with anti-PD-1 therapy. Our results reveal distinct functions of TREM2 in CNS cancers and support organ-specific myeloid cell remodeling in cancer immunotherapy.

2.
Nature ; 629(8010): 193-200, 2024 May.
Article in English | MEDLINE | ID: mdl-38600383

ABSTRACT

Sex differences in mammalian complex traits are prevalent and are intimately associated with androgens1-7. However, a molecular and cellular profile of sex differences and their modulation by androgens is still lacking. Here we constructed a high-dimensional single-cell transcriptomic atlas comprising over 2.3 million cells from 17 tissues in Mus musculus and explored the effects of sex and androgens on the molecular programs and cellular populations. In particular, we found that sex-biased immune gene expression and immune cell populations, such as group 2 innate lymphoid cells, were modulated by androgens. Integration with the UK Biobank dataset revealed potential cellular targets and risk gene enrichment in antigen presentation for sex-biased diseases. This study lays the groundwork for understanding the sex differences orchestrated by androgens and provides important evidence for targeting the androgen pathway as a broad therapeutic strategy for sex-biased diseases.


Subject(s)
Androgens , Cells , Sex Characteristics , Single-Cell Analysis , Transcriptome , Animals , Female , Humans , Male , Mice , Androgens/metabolism , Androgens/pharmacology , Antigen Presentation/drug effects , Antigen Presentation/genetics , Immunity, Innate , Lymphocytes/metabolism , Lymphocytes/cytology , Lymphocytes/immunology , Lymphocytes/drug effects , Mice, Inbred C57BL , Transcriptome/drug effects , Transcriptome/genetics , UK Biobank , Cells/drug effects , Cells/immunology , Cells/metabolism
3.
Sci Immunol ; 8(87): eabq2424, 2023 09 29.
Article in English | MEDLINE | ID: mdl-37738362

ABSTRACT

Metabolic fitness of T cells is essential for their vitality, which is largely dependent on the behavior of the mitochondria. The nature of mitochondrial behavior in tumor-infiltrating T cells remains poorly understood. In this study, we show that mitofusin-2 (MFN2) expression is positively correlated with the prognosis of multiple cancers. Genetic ablation of Mfn2 in CD8+ T cells dampens mitochondrial metabolism and function and promotes tumor progression. In tumor-infiltrating CD8+ T cells, MFN2 enhances mitochondria-endoplasmic reticulum (ER) contact by interacting with ER-embedded Ca2+-ATPase SERCA2, facilitating the mitochondrial Ca2+ influx required for efficient mitochondrial metabolism. MFN2 stimulates the ER Ca2+ retrieval activity of SERCA2, thereby preventing excessive mitochondrial Ca2+ accumulation and apoptosis. Elevating mitochondria-ER contact by increasing MFN2 in CD8+ T cells improves the efficacy of cancer immunotherapy. Thus, we reveal a tethering-and-buffering mechanism of organelle cross-talk that regulates the metabolic fitness of tumor-infiltrating CD8+ T cells and highlights the therapeutic potential of enhancing MFN2 expression to optimize T cell function.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Humans , Apoptosis , Endoplasmic Reticulum , GTP Phosphohydrolases , Mitochondria , Mitochondrial Proteins
4.
Acta Pharm Sin B ; 13(9): 3802-3816, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37719385

ABSTRACT

The chemical complexity of traditional Chinese medicines (TCMs) makes the active and functional annotation of natural compounds challenging. Herein, we developed the TCMs-Compounds Functional Annotation platform (TCMs-CFA) for large-scale predicting active compounds with potential mechanisms from TCM complex system, without isolating and activity testing every single compound one by one. The platform was established based on the integration of TCMs knowledge base, chemome profiling, and high-content imaging. It mainly included: (1) selection of herbal drugs of target based on TCMs knowledge base; (2) chemome profiling of TCMs extract library by LC‒MS; (3) cytological profiling of TCMs extract library by high-content cell-based imaging; (4) active compounds discovery by combining each mass signal and multi-parametric cell phenotypes; (5) construction of functional annotation map for predicting the potential mechanisms of lead compounds. In this stud TCMs with myocardial protection were applied as a case study, and validated for the feasibility and utility of the platform. Seven frequently used herbal drugs (Ginseng, etc.) were screened from 100,000 TCMs formulas for myocardial protection and subsequently prepared as a library of 700 extracts. By using TCMs-CFA platform, 81 lead compounds, including 10 novel bioactive ones, were quickly identified by correlating 8089 mass signals with 170,100 cytological parameters from an extract library. The TCMs-CFA platform described a new evidence-led tool for the rapid discovery process by data mining strategies, which is valuable for novel lead compounds from TCMs. All computations are done through Python and are publicly available on GitHub.

5.
Article in English | MEDLINE | ID: mdl-36361163

ABSTRACT

This study applied territorial spatial planning control to a land use multi-scenario simulation in Changde, China, and measured the landscape ecological risk response. It embedded five planning control schemes, respectively, involving inertial development, urban expansion size quantity control, ecological spatial structure control, land use zoning control, and comprehensive control. Findings show that: (1) Woodland and arable land in Changde occupy 31.10% and 43.35% of land use, respectively, and constitute the main functional space of the research area. The scale of construction land in Changde has enlarged continuously, with ecological space represented by woodland and water constantly squeezed and occupied. (2) Comprehensive control has the most remarkable restraining effect on the disordered spread of construction land, while ecological space structure control is the most effective way to control ecological land shrinkage. (3) The overall landscape ecological risk index expanded over 2009-2018, presenting an S-type time evolution curve of "sharp increase-mitigation". Landscape ecological risk presents a single-core, double-layer circle structure with the north and east regions as the core, attenuating to the periphery. (4) Landscape ecological risk under land use zoning control increased significantly more than in other scenarios. Comprehensive control best prevented landscape ecological risk and restrained the disorderly expansion of construction land.


Subject(s)
Conservation of Natural Resources , Ecosystem , Forests , Computer Simulation , City Planning , China , Cities
6.
Zhongguo Zhong Yao Za Zhi ; 47(16): 4269-4276, 2022 Aug.
Article in Chinese | MEDLINE | ID: mdl-36046852

ABSTRACT

High content imaging(HCI) technique that combines automatic high throughput with high-resolution cell imaging, is characterized by abundant data information, high imaging sensitivity, easy visualization and standardization, and is commonly used in the cellular(or subcellular) phenotypic analysis. Abundant phenotypic information can be obtained by using HCI in one experiment, including cellular morphology, cellular structure, and signal transduction pathways of related functions, on the basis of the maintenance of the integrity of cellular structures and functions. Multiple studies have shown that a series of dynamic spatio-temporal interactive change processes were induced by the disturbance of cells by specific factors, making cell phenotypes change accordingly, especially for the slight perturbation response of cells. Generally, the detection of one or several endpoint effect indicators is often difficult to accurately and comprehensively reflect the overall efficacy information of traditional Chinese medicine(TCM) because of its unique characteristics of multi-components and multi-targets. The application of HCI is thus helpful to discover the effective components and their action modes in the complex system of TCM. This paper reviewed the application progress in the HCI technique in the screening of active components and their regulation mechanism to provide references for further research.


Subject(s)
Drugs, Chinese Herbal , Medicine, Chinese Traditional , Drugs, Chinese Herbal/pharmacology
7.
J Clin Invest ; 132(19)2022 10 03.
Article in English | MEDLINE | ID: mdl-35972800

ABSTRACT

Characterization of the dynamic change in the immunological landscape during malignant transformation from precancerous lesions to cancerous lesions in squamous cell carcinoma (SCC) is critical for the application of immunotherapy. Here, we performed single-cell RNA-Seq (scRNA-Seq) of 131,702 cells from 13 cancerous tissues of oral squamous cell carcinoma (OSCC), 3 samples of precancerous oral leukoplakia, and 8 adjacent normal samples. We found that tumor-infiltrating CD4+ and CD8+ T cells were functionally inhibited by immunosuppressive ligands expressed on various types of myeloid cells or neutrophils in the process of oral carcinogenesis. Notably, we identified a subset of myofibroblasts that exclusively expressed tryptophan 2,3-dioxygenase (TDO2). These TDO2+ myofibroblasts were located distally from tumor nests, and both CD4+ and CD8+ T cells were enriched around them. Functional experiments revealed that TDO2+ myofibroblasts were more likely to possess the ability for chemotaxis toward T cells but induced the transformation of CD4+ T cells into Tregs and caused CD8+ T cell dysfunction. We further showed that use of the TDO2 inhibitor LM10 attenuated the inhibitory states of T cells, restored the T cell antitumor response, and prevented the progression of OSCC malignant transformation in murine models. Our study reveals a multistep transcriptomic landscape of OSCC and demonstrates that TDO2+ myofibroblasts are potential targets for immunotherapy.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Animals , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Humans , Ligands , Mice , Mouth Neoplasms/genetics , Mouth Neoplasms/pathology , Myofibroblasts/metabolism , Precipitins , Squamous Cell Carcinoma of Head and Neck , Tryptophan Oxygenase/metabolism
8.
Mil Med Res ; 9(1): 24, 2022 05 27.
Article in English | MEDLINE | ID: mdl-35619176

ABSTRACT

BACKGROUND: Mucosal-associated invariant T (MAIT) cells are systemically depleted in human immunodeficiency virus type 1 (HIV-1) infected patients and are not replenished even after successful combined antiretroviral therapy (cART). This study aimed to identify the mechanism underlying MAIT cell depletion. METHODS: In the present study, we applied flow cytometry, single-cell RNA sequencing and immunohistochemical staining to evaluate the characteristics of pyroptotic MAIT cells in a total of 127 HIV-1 infected individuals, including 69 treatment-naive patients, 28 complete responders, 15 immunological non-responders, and 15 elite controllers, at the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China. RESULTS: Single-cell transcriptomic profiles revealed that circulating MAIT cells from HIV-1 infected subjects were highly activated, with upregulation of pyroptosis-related genes. Further analysis revealed that increased frequencies of pyroptotic MAIT cells correlated with markers of systemic T-cell activation, microbial translocation, and intestinal damage in cART-naive patients and poor CD4+ T-cell recovery in long-term cART patients. Immunohistochemical staining revealed that MAIT cells in the gut mucosa of HIV-1 infected patients exhibited a strong active gasdermin-D (GSDMD, marker of pyroptosis) signal near the cavity side, suggesting that these MAIT cells underwent active pyroptosis in the colorectal mucosa. Increased levels of the proinflammatory cytokines interleukin-12 (IL-12) and IL-18 were observed in HIV-1 infected patients. In addition, activated MAIT cells exhibited an increased pyroptotic phenotype after being triggered by HIV-1 virions, T-cell receptor signals, IL-12 plus IL-18, and combinations of these factors, in vitro. CONCLUSIONS: Activation-induced MAIT cell pyroptosis contributes to the loss of MAIT cells in HIV-1 infected patients, which could potentiate disease progression and poor immune reconstitution.


Subject(s)
HIV Infections , HIV-1 , Mucosal-Associated Invariant T Cells , HIV Infections/drug therapy , Humans , Interleukin-12 , Interleukin-18 , Pyroptosis
9.
Cell Discov ; 8(1): 29, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35351857

ABSTRACT

To obtain a comprehensive scenario of T cell profiles and synergistic immune responses, we performed single-cell RNA sequencing (scRNA-seq) on the peripheral T cells of 14 individuals with chronic human immunodeficiency virus 1 (HIV-1) infection, including nine treatment-naive (TP) and eight antiretroviral therapy (ART) participants (of whom three were paired with TP cases), and compared the results with four healthy donors (HD). Through analyzing the transcriptional profiles of CD4+ and CD8+ T cells, coupled with assembled T cell receptor sequences, we observed the significant loss of naive T cells, prolonged inflammation, and increased response to interferon-α in TP individuals, which could be partially restored by ART. Interestingly, we revealed that CD4+ and CD8+ Effector-GNLY clusters were expanded in TP cases, and persistently increased in ART individuals where they were typically correlated with poor immune restoration. This transcriptional dataset enables a deeper understanding of the pathogenesis of HIV-1 infection and is also a rich resource for developing novel immune targeted therapeutic strategies.

10.
Sci Transl Med ; 14(630): eabk2756, 2022 02 02.
Article in English | MEDLINE | ID: mdl-35108060

ABSTRACT

Lung cancer is the leading cause of cancer mortality, and early detection is key to improving survival. However, there are no reliable blood-based tests currently available for early-stage lung cancer diagnosis. Here, we performed single-cell RNA sequencing of different early-stage lung cancers and found that lipid metabolism was broadly dysregulated in different cell types, with glycerophospholipid metabolism as the most altered lipid metabolism-related pathway. Untargeted lipidomics was carried out in an exploratory cohort of 311 participants. Through support vector machine algorithm-based and mass spectrum-based feature selection, we identified nine lipids (lysophosphatidylcholines 16:0, 18:0, and 20:4; phosphatidylcholines 16:0-18:1, 16:0-18:2, 18:0-18:1, 18:0-18:2, and 16:0-22:6; and triglycerides 16:0-18:1-18:1) as the features most important for early-stage cancer detection. Using these nine features, we developed a liquid chromatography-mass spectrometry (MS)-based targeted assay using multiple reaction monitoring. This target assay achieved 100.00% specificity on an independent validation cohort. In a hospital-based lung cancer screening cohort of 1036 participants examined by low-dose computed tomography and a prospective clinical cohort containing 109 participants, the assay reached more than 90.00% sensitivity and 92.00% specificity. Accordingly, matrix-assisted laser desorption/ionization MS imaging confirmed that the selected lipids were differentially expressed in early-stage lung cancer tissues in situ. This method, designated as Lung Cancer Artificial Intelligence Detector, may be useful for early detection of lung cancer or large-scale screening of high-risk populations for cancer prevention.


Subject(s)
Lipidomics , Lung Neoplasms , Artificial Intelligence , Early Detection of Cancer , Humans , Lipid Metabolism/genetics , Lipids/analysis , Lung Neoplasms/diagnosis , Prospective Studies , Single-Cell Analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
11.
Clin Transl Med ; 12(1): e700, 2022 01.
Article in English | MEDLINE | ID: mdl-35051311

ABSTRACT

BACKGROUND: Neurotropic virus infection can cause serious damage to the central nervous system (CNS) in both humans and animals. The complexity of the CNS poses unique challenges to investigate the infection of these viruses in the brain using traditional techniques. METHODS: In this study, we explore the use of fluorescence micro-optical sectioning tomography (fMOST) and single-cell RNA sequencing (scRNA-seq) to map the spatial and cellular distribution of a representative neurotropic virus, rabies virus (RABV), in the whole brain. Mice were inoculated with a lethal dose of a recombinant RABV encoding enhanced green fluorescent protein (EGFP) under different infection routes, and a three-dimensional (3D) view of RABV distribution in the whole mouse brain was obtained using fMOST. Meanwhile, we pinpointed the cellular distribution of RABV by utilizing scRNA-seq. RESULTS: Our fMOST data provided the 3D view of a neurotropic virus in the whole mouse brain, which indicated that the spatial distribution of RABV in the brain was influenced by the infection route. Interestingly, we provided evidence that RABV could infect multiple nuclei related to fear independent of different infection routes. More surprisingly, our scRNA-seq data revealed that besides neurons RABV could infect macrophages and the infiltrating macrophages played at least three different antiviral roles during RABV infection. CONCLUSION: This study draws a comprehensively spatial and cellular map of typical neurotropic virus infection in the mouse brain, providing a novel and insightful strategy to investigate the pathogenesis of RABV and other neurotropic viruses.


Subject(s)
Brain/cytology , Rabies virus/pathogenicity , Rabies/complications , Animals , Brain/abnormalities , Disease Models, Animal , Mice , Rabies/physiopathology , Rabies virus/metabolism , Single-Cell Analysis/methods , Single-Cell Analysis/statistics & numerical data , Tomography, Optical/methods , Tomography, Optical/statistics & numerical data
12.
Phytomedicine ; 96: 153911, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35026505

ABSTRACT

BACKGROUND: Yindan Xinnaotong soft capsule (YDXNT) is a clinically effective herbal prescription used for the treatment of cardiovascular and cerebrovascular diseases. Since Chinese medicines (CMs) exert their effects via a "multiple-components and multiple-targets" mode, discovery of the active compounds with interactive effects may contribute to reveal their mechanisms of action. PURPOSE: This study aimed to establish an image-based fingerprint-efficacy screening strategy to identify active compounds with interaction effects from CM prescription, using YDXNT to inhibit microglia-mediated neuroinflammation as an instance. METHODS: A multi-component random content-oriented chemical library of YDXNT was constructed by uniform design, and their chemical fingerprint was profiled by liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) methods. Then the neuroinflammation activities of chemical library members of YDXNT were determined by image-based dual phenotypic quantification. Subsequently, fingerprint-efficacy correlation and random forest analysis were applied to predict the potentially active compounds with interactive effects. Finally, the interactive effects among the active compounds were confirmed by quantitative polymerase chain reaction (qPCR) and apoptosis analysis, and network pharmacology was applied to explore the possible mechanisms. RESULTS: Image-based fingerprint-efficacy correlation analysis revealed that six tanshinones (TNs) and four flavonoids (FAs) were potential anti-neuroinflammatory compounds. The inter-family of TNs and FAs possessed obvious interactive effects (combination index ≤ 0.825). Moreover, the combination of scutellarein and tanshinone I (2:1, w/w) was discovered as the possible interactive combinatorial components, which, comparing with individual scutellarein or tanshinone I, shown more powerful effects on anti-inflammatory and anti-apoptotic effects in lipopolysaccharide (LPS)-induced BV2 cells. Network pharmacology showed that the active compounds might suppress microglia-mediated neuroinflammation via multiple targets in the T cell receptor, Jak-STAT, and Toll-like receptor signaling pathways. CONCLUSION: The image-based fingerprint-efficacy strategy simplifies the screening process of efficacious component combinations in CMs for complex diseases, which also offers a promising approach to explore the integrative therapeutic mechanisms of CMs.


Subject(s)
Drugs, Chinese Herbal , Anti-Inflammatory Agents , Chromatography, Liquid , Drugs, Chinese Herbal/pharmacology , Humans , Network Pharmacology , Neuroinflammatory Diseases
14.
Cell ; 184(7): 1895-1913.e19, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33657410

ABSTRACT

A dysfunctional immune response in coronavirus disease 2019 (COVID-19) patients is a recurrent theme impacting symptoms and mortality, yet a detailed understanding of pertinent immune cells is not complete. We applied single-cell RNA sequencing to 284 samples from 196 COVID-19 patients and controls and created a comprehensive immune landscape with 1.46 million cells. The large dataset enabled us to identify that different peripheral immune subtype changes are associated with distinct clinical features, including age, sex, severity, and disease stages of COVID-19. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA was found in diverse epithelial and immune cell types, accompanied by dramatic transcriptomic changes within virus-positive cells. Systemic upregulation of S100A8/A9, mainly by megakaryocytes and monocytes in the peripheral blood, may contribute to the cytokine storms frequently observed in severe patients. Our data provide a rich resource for understanding the pathogenesis of and developing effective therapeutic strategies for COVID-19.


Subject(s)
COVID-19/immunology , Megakaryocytes/immunology , Monocytes/immunology , RNA, Viral , SARS-CoV-2/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Child , China , Cohort Studies , Cytokines/metabolism , Female , Humans , Male , Middle Aged , RNA, Viral/blood , RNA, Viral/isolation & purification , Single-Cell Analysis , Transcriptome/immunology , Young Adult
15.
Sci Adv ; 7(5)2021 01.
Article in English | MEDLINE | ID: mdl-33571124

ABSTRACT

Lung adenocarcinomas (LUAD) that radiologically display as subsolid nodules (SSNs) exhibit more indolent biological behavior than solid LUAD. The transcriptomic features and tumor microenvironment (TME) of SSN remain poorly understood. Here, we performed single-cell RNA sequencing analyses of 16 SSN samples, 6 adjacent normal lung tissues (nLung), and 9 primary LUAD with lymph node metastasis (mLUAD). Approximately 0.6 billion unique transcripts were obtained from 118,293 cells. We found that cytotoxic natural killer/T cells were dominant in the TME of SSN, and malignant cells in SSN undergo a strong metabolic reprogram and immune stress. In SSN, the subtype composition of endothelial cells was similar to that in mLUAD, while the subtype distribution of fibroblasts was more like that in nLung. Our study provides single-cell transcriptomic profiling of SSN and their TME. This resource provides deeper insight into the indolent nature of SSN and will be helpful in advancing lung cancer immunotherapy.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Ecosystem , Endothelial Cells/pathology , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Sequence Analysis, RNA , Tomography, X-Ray Computed , Tumor Microenvironment/genetics
16.
Cell Res ; 31(2): 141-156, 2021 02.
Article in English | MEDLINE | ID: mdl-32989223

ABSTRACT

Cells mitigate ER stress through the unfolded protein response (UPR). Here, we report formation of ER whorls as an effector mechanism of the ER stress response. We found that strong ER stress induces formation of ER whorls, which contain ER-resident proteins such as the Sec61 complex and PKR-like ER kinase (PERK). ER whorl formation is dependent on PERK kinase activity and is mediated by COPII machinery, which facilitates ER membrane budding to form tubular-vesicular ER whorl precursors. ER whorl precursors then go through Sec22b-mediated fusion to form ER whorls. We further show that ER whorls contribute to ER stress-induced translational inhibition by possibly modulating PERK activity and by sequestering translocons in a ribosome-free environment. We propose that formation of ER whorls reflects a new type of ER stress response that controls inhibition of protein translation.


Subject(s)
Endoplasmic Reticulum Stress/genetics , Endoplasmic Reticulum/metabolism , R-SNARE Proteins/metabolism , SEC Translocation Channels/metabolism , Signal Transduction/genetics , eIF-2 Kinase/metabolism , Animals , B-Lymphocytes/metabolism , Epithelial Cells/metabolism , Gene Knockout Techniques/methods , HEK293 Cells , Humans , Mice , Phosphorylation/genetics , Protein Biosynthesis/genetics , R-SNARE Proteins/genetics , Rats , SEC Translocation Channels/genetics , Transfection , Unfolded Protein Response , eIF-2 Kinase/genetics
18.
Nat Immunol ; 21(9): 1107-1118, 2020 09.
Article in English | MEDLINE | ID: mdl-32788748

ABSTRACT

In coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the relationship between disease severity and the host immune response is not fully understood. Here we performed single-cell RNA sequencing in peripheral blood samples of 5 healthy donors and 13 patients with COVID-19, including moderate, severe and convalescent cases. Through determining the transcriptional profiles of immune cells, coupled with assembled T cell receptor and B cell receptor sequences, we analyzed the functional properties of immune cells. Most cell types in patients with COVID-19 showed a strong interferon-α response and an overall acute inflammatory response. Moreover, intensive expansion of highly cytotoxic effector T cell subsets, such as CD4+ effector-GNLY (granulysin), CD8+ effector-GNLY and NKT CD160, was associated with convalescence in moderate patients. In severe patients, the immune landscape featured a deranged interferon response, profound immune exhaustion with skewed T cell receptor repertoire and broad T cell expansion. These findings illustrate the dynamic nature of immune responses during disease progression.


Subject(s)
Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , Betacoronavirus/immunology , Coronavirus Infections/immunology , Interferon Type I/metabolism , Pneumonia, Viral/immunology , Receptors, Immunologic/metabolism , Adolescent , Adult , Aged , Antigens, CD/genetics , Antigens, CD/immunology , Antigens, Differentiation, T-Lymphocyte/genetics , Antigens, Differentiation, T-Lymphocyte/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , COVID-19 , Cohort Studies , Coronavirus Infections/blood , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Female , GPI-Linked Proteins/genetics , GPI-Linked Proteins/immunology , GPI-Linked Proteins/metabolism , Humans , Interferon Type I/genetics , Interferon Type I/immunology , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Male , Middle Aged , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , RNA-Seq , Receptors, Immunologic/genetics , Receptors, Immunologic/immunology , SARS-CoV-2 , Severity of Illness Index , Single-Cell Analysis
19.
BMC Bioinformatics ; 21(1): 340, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32738892

ABSTRACT

BACKGROUND: Ribosome profiling has been widely used for studies of translation under a large variety of cellular and physiological contexts. Many of these studies have greatly benefitted from a series of data-mining tools designed for dissection of the translatome from different aspects. However, as the studies of translation advance quickly, the current toolbox still falls in short, and more specialized tools are in urgent need for deeper and more efficient mining of the important and new features of the translation landscapes. RESULTS: Here, we present RiboMiner, a bioinformatics toolset for mining of multi-dimensional features of the translatome with ribosome profiling data. RiboMiner performs extensive quality assessment of the data and integrates a spectrum of tools for various metagene analyses of the ribosome footprints and for detailed analyses of multiple features related to translation regulation. Visualizations of all the results are available. Many of these analyses have not been provided by previous methods. RiboMiner is highly flexible, as the pipeline could be easily adapted and customized for different scopes and targets of the studies. CONCLUSIONS: Applications of RiboMiner on two published datasets did not only reproduced the main results reported before, but also generated novel insights into the translation regulation processes. Therefore, being complementary to the current tools, RiboMiner could be a valuable resource for dissections of the translation landscapes and the translation regulations by mining the ribosome profiling data more comprehensively and with higher resolution. RiboMiner is freely available at https://github.com/xryanglab/RiboMiner and https://pypi.org/project/RiboMiner .


Subject(s)
Computational Biology/methods , Protein Biosynthesis , Ribosomes/metabolism , Software , Amino Acid Motifs , Amino Acid Sequence , Amino Acids/genetics , Codon/genetics , Data Analysis , Data Mining
20.
Mol Cell ; 79(4): 575-587.e7, 2020 08 20.
Article in English | MEDLINE | ID: mdl-32589965

ABSTRACT

eIF3, a multi-subunit complex with numerous functions in canonical translation initiation, is known to interact with 40S and 60S ribosomal proteins and translation elongation factors, but a direct involvement in translation elongation has never been demonstrated. We found that eIF3 deficiency reduced early ribosomal elongation speed between codons 25 and 75 on a set of ∼2,700 mRNAs encoding proteins associated with mitochondrial and membrane functions, resulting in defective synthesis of their encoded proteins. To promote elongation, eIF3 interacts with 80S ribosomes translating the first ∼60 codons and serves to recruit protein quality-control factors, functions required for normal mitochondrial physiology. Accordingly, eIF3e+/- mice accumulate defective mitochondria in skeletal muscle and show a progressive decline in muscle strength. Hence, eIF3 interacts with 80S ribosomes to enhance, at the level of early elongation, the synthesis of proteins with membrane-associated functions, an activity that is critical for mitochondrial physiology and muscle health.


Subject(s)
Eukaryotic Initiation Factor-3/metabolism , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Peptide Chain Elongation, Translational , Animals , Cell Membrane/genetics , Cell Membrane/metabolism , Eukaryotic Initiation Factor-3/genetics , HeLa Cells , Humans , Mice, Knockout , Mitochondria/genetics , Mitochondria, Muscle/metabolism , Mitochondria, Muscle/pathology , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Muscle, Skeletal/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ribosome Subunits/genetics , Ribosome Subunits/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...