Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Pharm Sin B ; 13(6): 2369-2382, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37425053

ABSTRACT

Pulmonary hypertension (PH) is an insidious pulmonary vasculopathy with high mortality and morbidity and its underlying pathogenesis is still poorly delineated. The hyperproliferation and apoptosis resistance of pulmonary artery smooth muscle cells (PASMCs) contributes to pulmonary vascular remodeling in pulmonary hypertension, which is closely linked to the downregulation of fork-head box transcriptional factor O1 (FoxO1) and apoptotic protein caspase 3 (Cas-3). Here, PA-targeted co-delivery of a FoxO1 stimulus (paclitaxel, PTX) and Cas-3 was exploited to alleviate monocrotaline-induced pulmonary hypertension. The co-delivery system is prepared by loading the active protein on paclitaxel-crystal nanoparticles, followed by a glucuronic acid coating to target the glucose transporter-1 on the PASMCs. The co-loaded system (170 nm) circulates in the blood over time, accumulates in the lung, effectively targets the PAs, and profoundly regresses the remodeling of pulmonary arteries and improves hemodynamics, leading to a decrease in pulmonary arterial pressure and Fulton's index. Our mechanistic studies suggest that the targeted co-delivery system alleviates experimental pulmonary hypertension primarily via the regression of PASMC proliferation by inhibiting cell cycle progression and promoting apoptosis. Taken together, this targeted co-delivery approach offers a promising avenue to target PAs and cure the intractable vasculopathy in pulmonary hypertension.

2.
J Control Release ; 341: 591-604, 2022 01.
Article in English | MEDLINE | ID: mdl-34896449

ABSTRACT

Pulmonary arterial hypertension (PAH) is an uncommon and deadly cardiopulmonary disease. PAH stems essentially from pulmonary artery (PA) remodeling induced predominantly by over-proliferation of PA smooth muscle cells (PASMCs) and inflammation. However, effective treatments are still missing in the clinic because the available drugs consisting of vasodilators are aimed to attenuate PAH symptoms rather than inhibit the remodeling process. Here, we aimed to specifically co-deliver apoptotic executor gene p53 and anti-inflammatory baicalein to PASMCs to alleviate PAH. The targeted co-delivery system was prepared through a carrier-free approach, which was prepared by loading the conjugate, NLS (nuclear localization signal) peptide-p53 gene, onto the baicalein pure crystals, followed by coating with glucuronic acid (GA) for targeting the glucose transport-1 (GLUT-1). The co-delivery system developed has a 200-nm diameter with a rod shape and a drug-loading capacity of 62% (w/w). The prepared system was shown to target PASMCs in vitro and enabled effective gene transfection, efficient apoptosis, and inflammation suppression. In vivo, via targeting the axis lung-PAs-PASMCs, the co-delivery reversed monocrotaline-induced PAH by reducing pulmonary artery pressure, downregulating the proinflammatory cytokine TNF-α, and inhibiting remodeling of both PAs and right ventricular. The potent efficacy may closely correlate with the activation of the signaling axis Bax/Bcl-2/Cas-3. Overall, our results indicate that the co-delivery system holds a significant potential to target the axis of lung-PAs-PASMCs and treat PAH.


Subject(s)
Drug Delivery Systems , Flavanones , Hypertension, Pulmonary , Myocytes, Smooth Muscle , Tumor Suppressor Protein p53 , Animals , Flavanones/administration & dosage , Hypertension, Pulmonary/drug therapy , Monocrotaline , Tumor Suppressor Protein p53/administration & dosage
3.
Acta Pharm Sin B ; 10(8): 1521-1533, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32963947

ABSTRACT

Atherosclerosis (AS) is a lipid-driven chronic inflammatory disease occurring at the arterial subendothelial space. Macrophages play a critical role in the initiation and development of AS. Herein, targeted codelivery of anti-miR 155 and anti-inflammatory baicalein is exploited to polarize macrophages toward M2 phenotype, inhibit inflammation and treat AS. The codelivery system consists of a carrier-free strategy (drug-delivering-drug, DDD), fabricated by loading anti-miR155 on baicalein nanocrystals, named as baicalein nanorods (BNRs), followed by sialic acid coating to target macrophages. The codelivery system, with a diameter of 150 nm, enables efficient intracellular delivery of anti-miR155 and polarizes M1 to M2, while markedly lowers the level of inflammatory factors in vitro and in vivo. In particular, intracellular fate assay reveals that the codelivery system allows for sustained drug release over time after internalization. Moreover, due to prolonged blood circulation and improved accumulation at the AS plaque, the codelivery system significantly alleviates AS in animal model by increasing the artery lumen diameter, reducing blood pressure, promoting M2 polarization, inhibiting secretion of inflammatory factors and decreasing blood lipids. Taken together, the codelivery could potentially be used to treat vascular inflammation.

SELECTION OF CITATIONS
SEARCH DETAIL
...