Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Environ Sci ; 29(10): 742-753, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27927274

ABSTRACT

OBJECTIVE: To trace the source of human H7N9 cases in Huai'an and elucidate the genetic characterization of Huai'an strains associated with both humans and birds in live poultry market. METHODS: An enhanced surveillance was implemented when the first human H7N9 case was confirmed in Huai'an. Clinical specimens, cloacal swabs, and fecal samples were collected and screened by real-time reverse transcription-polymerase chain reaction (RT-PCR) for H7N9 virus. The positive samples were subjected to further RT-PCR and genome sequencing. The phylodynamic patterns of H7N9 virus within and separated from Huai'an and evolutionary dynamics of the virus were analyzed. RESULTS: Six patients with H7N9 infection were previously exposed to live poultry market and presented symptoms such as fever (>38.0 °C) and headaches. Results of this study support the hypothesis that live poultry markets were the source of human H7N9 exposure. Phylogenetic analysis revealed that all novel H7N9 viruses, including Huai'an strains, could be classified into two distinct clades, A and B. Additionally, the diversified H7N9 virus circulated in live poultry markets in Huai'an. Interestingly, the common ancestors of the Huai'an H7N9 virus existed in January 2012. The mean nucleotide substitution rates for each gene segment of the H7N9 virus were (3.09-7.26)×10-3 substitutions/site per year (95% HPD: 1.72×10-3 to 1.16×10-2). CONCLUSION: Overall, the source of exposure of human H7N9 cases in Huai'an was live poultry market, and our study highlights the presence of divergent genetic lineage of H7N9 virus in both humans and poultry specimens in Huai'an.


Subject(s)
Influenza A Virus, H7N9 Subtype/genetics , Influenza in Birds/virology , Influenza, Human/virology , Phylogeny , Adult , Aged , Aged, 80 and over , Animals , China/epidemiology , Evolution, Molecular , Female , Humans , Influenza A Virus, H7N9 Subtype/classification , Influenza A Virus, H7N9 Subtype/isolation & purification , Influenza in Birds/epidemiology , Influenza, Human/epidemiology , Male , Middle Aged , Molecular Epidemiology , Poultry , Prevalence
2.
J Chem Phys ; 140(8): 084903, 2014 Feb 28.
Article in English | MEDLINE | ID: mdl-24588194

ABSTRACT

Primary charge photogeneration dynamics in neat and fullerene-blended films of a pair of alternating benzo[1,2-b:4,5-b(')]dithiophene (BDT) and thieno[3,4-b]thiophene (TT) copolymers are comparatively studied by using near-infrared, time-resolved absorption (TA) spectroscopy under low excitation photon fluence. PBDTTT-E and PBDTTT-C, differed merely in the respective TT-substituents of ester (-E) and carbonyl (-C), show distinctly different charge photogeneration dynamics. The pair of neat PBDTTT films show exciton lifetimes of ∼0.1 ns and fluorescence quantum yields below 0.2%, as well as prominent excess-energy enhanced exciton dissociation. In addition, PBDTTT-C gives rise to >50% higher P(•+) yield than PBDTTT-E does irrespective to the excitation photon energy. Both PBDTTT-E:PC61BM and PBDTTT-C:PC61BM blends show subpicosecond exciton lifetimes and nearly unitary fluorescence quenching efficiency and, with respect to the former blend, the latter one shows substantially higher branching ratio of charge separated (CS) state over interfacial charge transfer (ICT) state, and hence more efficient exciton-to-CS conversion. For PBDTTT-C:PC61BM, the ultrafast charge dynamics clearly show the processes of ICT-CS interconversion and P(•+) migration, which are possibly influenced by the ICT excess energy. However, such processes are relatively indistinctive in the case of PBDTTT-E:PC61BM. The results strongly prove the importance of ICT dissociation in yielding free charges, and are discussed in terms of the film morphology and the precursory solution-phase macromolecular conformation.

3.
J Chem Phys ; 139(12): 124904, 2013 Sep 28.
Article in English | MEDLINE | ID: mdl-24089801

ABSTRACT

Solution-phase conformations and charge photogeneration dynamics of a pair of low-bandgap copolymers based on benzo[1,2-b:4,5-b(')]dithiophene (BDT) and thieno[3,4-b]thiophene (TT), differed by the respective carbonyl (-C) and ester (-E) substituents at the TT units, were comparatively investigated by using near-infrared time-resolved absorption (TA) spectroscopy at 25 °C and 120 °C. Steady-state and TA spectroscopic results corroborated by quantum chemical analyses prove that both PBDTTT-C and PBDTTT-E in chlorobenzene solutions are self-aggregated; however, the former bears a relatively higher packing order. Specifically, PBDTTT-C aggregates with more π-π stacked domains, whereas PBDTTT-E does with more random coils interacting strongly at the chain intersections. At 25 °C, the copolymers exhibit comparable exciton lifetimes (~1 ns) and fluorescence quantum yields (~2%), but distinctly different charge photogeneration dynamics: PBDTTT-C on photoexcitation gives rise to a branching ratio of charge separated (CS) over charge transfer (CT) states more than 20% higher than PBDTTT-E does, correlating with their photovoltaic performance. Temperature and excitation-wavelength dependent exciton∕charge dynamics suggest that the CT states localize at the chain intersections that are survivable up to 120 °C, and that the excitons and the CS states inhabit the stretched strands and the also thermally robust orderly stacked domains. The stable self-aggregation structures and the associated primary charge dynamics of the PBDTTT copolymers in solutions are suggested to impact intimately on the morphologies and the charge photogeneration efficiency of the solid-state photoactive layers.

4.
Opt Express ; 21 Suppl 2: A241-9, 2013 Mar 11.
Article in English | MEDLINE | ID: mdl-23482286

ABSTRACT

Influence of electric field on the subnanosecond charge photogeneration dynamics in the polymer solar cell based on polyfluorene copolymer BisDMO-PFDTBT blended with PC(61)BM was examined with transient absorption spectroscopy. The charge dynamics showed no difference under short- or open-circuit conditions and under a forward bias of 0.79 V (1.6 × 10(5) V/cm), implying negligible field effects on the subnanosecond dynamics of charge photogeneration/recombination. However, under the reverse biases of -2 V (4.0 × 10(5) V/cm) and -5 V (1.0 × 10(6) V/cm), significant enhancement of charge photogeneration and apparent suppression of polaron pair recombination were observed, which agrees with the field-assisted enhancement of external quantum efficiency of the solar cell devices.

5.
J Agric Food Chem ; 59(23): 12643-51, 2011 Dec 14.
Article in English | MEDLINE | ID: mdl-22023371

ABSTRACT

Green tea polyphenols, (-)-epicatechin (EC), (-)-epigallocatechin (EGC), (-)-epicatechin gallate (ECG), and (-)-epigallocatechin gallate (EGCG), all showed antioxidative effect in liposomes for lipid oxidation initiated in the lipid phase (antioxidant efficiency EC > EGCG > ECG > EGC) or in the aqueous phase (EC ≫ EGC > EGCG > ECG) as monitored by the formation of conjugated dienes. For initiation in the lipid phase, ß-carotene, itself active as an antioxidant, showed antagonism with the polyphenols (EC > ECG > EGCG > EGC). The Trolox equivalent antioxidant capacity (TEAC EGC > EGCG > ECG > EC) correlates with the lowest phenol O-H bond dissociation enthalpy (BDE) as calculated by density functional theory (DFT). Surface-enhanced Raman spectroscopy (SERS) was used to assess the reducing power of the phenolic hydroxyls in corroboration with DFT calculations. For homogeneous (1:9 v/v methanol/chloroform) solution, the ß-carotene radical cation reacted readily with each of the polyphenol monoanions (but not with the neutral polyphenols) with a rate approaching the diffusion limit for EC as studied by laser flash photolysis at 25 °C monitoring the radical cation at 950 nm. The rate constant did not correlate with polyphenol HOMO/LUMO energy gap (DFT calculations), and ß-carotene was not regenerated by an electron transfer reaction (monitored at 500 nm). It is suggested that the ß-carotene radical cation is rather reacting with the tea polyphenols through addition, as further evidenced by steady-state absorption spectroscopy and liquid chromatography-mass spectroscopy (LC-MS), in effect preventing regeneration of ß-carotene as an active lipid phase antioxidant and leading to the observed antagonism.


Subject(s)
Antioxidants , Lipid Peroxidation/drug effects , Liposomes/chemistry , Polyphenols/antagonists & inhibitors , Tea/chemistry , beta Carotene/chemistry , Cations , Free Radicals/chemistry , Free Radicals/pharmacology , Polyphenols/chemistry , beta Carotene/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...