Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 11(22)2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36429186

ABSTRACT

Heme-containing proteins, commonly abundant in red meat and blood, are considered promising dietary sources for iron supplementation and fortification with higher bioavailability and less side effects. As the precise structures and accurate bioactivity mechanism of various heme-containing proteins (hemoglobin, myoglobin, cytochrome, etc.) are determined, many methods have been explored for iron fortification. Based on their physicochemical and biological functions, heme-containing proteins and the hydrolyzed peptides have been also widely utilized as food ingredients and antibacterial agents in recent years. In this review, we summarized the structural characterization of hemoglobin, myoglobin, and other heme proteins in detail, and highlighted recent advances in applications of naturally occurring heme-containing proteins as dietary iron sources in the field of food science and nutrition. The regulation of absorption rate, auto-oxidation process, and dietary consumption of heme-containing proteins are then discussed. Future outlooks are also highlighted with the aim to suggest a research line to follow for further studies.

2.
Foods ; 11(4)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35206035

ABSTRACT

Understanding the effect of thermal treatment on the physical and chemical properties of protein and its mechanisms has important theoretical implications in food science. Pea seed ferritin (PSF) is an iron storage protein naturally occurring in pea seeds, which represents a promising iron supplement. However, how thermal processing affects the structure and function of PSF remains unknown. In this work, during the production of pea seed milk, we investigated the effect of thermal treatments at boiling temperature for two different times (5 and 10 min), respectively, on the structure and function of PSF. The results demonstrated that thermal treatment resulted in a pronounced change in the primary, secondary, and tertiary structure, iron content, and iron oxidation activity of PSF. However, the shell-like structure of PSF can be kept during the processing of pea seed milk. Interestingly, upon thermal treatment, both thermal-treated samples exhibit larger higher iron absorption rate by Caco-2 than untreated PSF at the same protein concentration. Such an investigation provides a better understanding of the relationship between the structure and function of food protein, as affected by thermal treatment.

3.
J Agric Food Chem ; 69(36): 10669-10677, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34463093

ABSTRACT

Chloroquine (CQ) is a famous medicine for treatment of diseases including malaria and pneumonia caused by COVID-19, but gastrointestinal disorder caused by its oral administration is a great concern. Milk is usually recommended to be taken with CQ to reduce such effect. However, the mechanism underlying this phenomenon remains unknown. Here, we found that ß-lactoglobulin (ß-LG), α-lactalbumin (α-LA), bovine serum albumin (BSA), and lactoferrin (LF) in whey proteins were able to interact with CQ to form complexes as suggested by fluorescence resonance energy transfer (FRET) and molecular docking. Indeed, the crystal structure revealed that ß-LG is bound to CQ through hydrophobic interactions and hydrogen bonding with a ratio of 1:1. Consequently, the formation of these protein-CQ complexes not only reduced the cytotoxicity of chloroquine to the stomach and gut cells but also facilitated its uptake by cells. This work gave an example to understand the relationship between food and drug.


Subject(s)
COVID-19 Drug Treatment , Chloroquine , Chloroquine/pharmacology , Humans , Lactalbumin , Lactoglobulins , Milk Proteins , Molecular Docking Simulation , SARS-CoV-2 , Whey Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...