Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(6): e0304453, 2024.
Article in English | MEDLINE | ID: mdl-38923974

ABSTRACT

Hirudo nipponia is an important medicinal animal in China. Its salivary gland secretions contain a variety of protein bioactive substances. Investigations of its salivary glands are of great significance in the study of the medicinal value and mechanism of leech secretions. Illumina RNA-Seq technology was used to perform transcriptome sequencing of salivary gland tissue of H. nipponia under starvation (D30) and fed (D0) states. A total of 2,650 differentially expressed genes (DEGs) were screened. Using the label-free protein quantification technique and bioinformatics analysis, the expression of differentially expressed proteins (DEPs) in the salivary gland tissue of H. nipponia was compared. A total of 2,021 proteins were identified, among which 181 proteins were differentially expressed between the starvation and fed states, with 72 significantly upregulated and 109 significantly downregulated. The salivary glands of H. nipponia synthesized protein-based active substances after 30 days of starvation and adapted to the starvation environment by weakening respiratory activity and reducing metabolic activity to reduce energy expenditure. Energy was produced by glycolysis and the tricarboxylic acid cycle for the synthesis of substances such as antibiotics. This study combined transcriptome and proteome sequencing data to provide a data reference for an in-depth study of the regulatory mechanism of salivary gland secretions of H. nipponia under starvation stress by analyzing DEGs and DEPs.


Subject(s)
Leeches , Proteome , Salivary Glands , Starvation , Transcriptome , Animals , Salivary Glands/metabolism , Proteome/metabolism , Starvation/metabolism , Starvation/genetics , Leeches/genetics , Leeches/metabolism , Gene Expression Profiling
2.
J Vis Exp ; (191)2023 01 20.
Article in English | MEDLINE | ID: mdl-36744786

ABSTRACT

Small extracellular vesicles (sEV) can be released from all cell types and carry protein, DNA, and RNA. Signaling molecules serve as indicators of the physiological and pathological state of a cell. However, there is no standard method for sEV isolation, which prevents downstream biomarker identification and drug intervention studies. In this article, we provide a detailed protocol for the isolation and purification of 50-200 nm sEV by a flow cell sorter. For this, a 50 µm nozzle and 80 psi sheath fluid pressure were selected to obtain a good sorting rate and stable side stream. Standard sized polystyrene microspheres were used to locate populations of 100, 200, and 300 nm particles. With additional optimization of the voltage, gain, and forward scatter (FSC) triggering threshold, the sEV signal could be separated from the background noise. These optimizations provide a panel of critical sort settings that enables one to obtain a representative population of sEV using FSC vs. side scatter (SSC) only. The flow cytometry-based isolation method not only allows for high-throughput analysis but also allows for synchronous classification or proteome analysis of sEV based on the biomarker expression, opening numerous downstream research applications.


Subject(s)
Extracellular Vesicles , Flow Cytometry/methods , Extracellular Vesicles/metabolism , Cell Movement , RNA/metabolism , Biomarkers/metabolism
3.
Front Genet ; 12: 761926, 2021.
Article in English | MEDLINE | ID: mdl-34858478

ABSTRACT

Adipose tissue-derived stromal cells are promising candidates investigating the stem cell-related treatment. However, their proportion and utility in the human body decline with time, rendering stem cells incompetent to complete repair processes in vivo. The involvement of circRNAs in the aging process is poorly understood. Rat subcutaneous adipose tissue from 10-week-old and 27-month-old rats were used for hematoxylin and eosin (H and E) staining, TUNEL staining, and circRNA sequencing. Rat adipose tissue-derived stromal cells were cultured and overexpressed with circ-ATXN2. Proliferation was examined using xCELLigence real-time cell analysis, EdU staining, and cell cycle assay. Apoptosis was induced by CoCl2 and examined using flow cytometry. RT-PCR assay and Oil Red O staining were used to measure adipogenesis at 48 h and 14 days, respectively. H and E staining showed that the diameter of adipocytes increased; however, the number of cells decreased in old rats. TUNEL staining showed that the proportion of apoptotic cells was increased in old rats. A total of 4,860 and 4,952 circRNAs was detected in young and old rats, respectively. Among them, 67 circRNAs exhibited divergent expression between the two groups (fold change ≥2, p ≤ 0.05), of which 33 were upregulated (49.3%) and 34 were downregulated (50.7%). The proliferation of circ-ATXN2-overexpressing cells decreased significantly in vitro, which was further validated by xCELLigence real-time cell analysis, EdU staining, and cell cycle assay. Overexpression of circ-ATXN2 significantly increased the total apoptotic rate from 5.78 ± 0.46% to 11.97 ± 1.61%, early apoptotic rate from 1.76 ± 0.22% to 5.50 ± 0.66%, and late apoptosis rate from 4.02 ± 0.25% to 6.47 ± 1.06% in adipose tissue-derived stromal cells. Furthermore, in circ-ATXN2-overexpressing cells, RT-PCR assay revealed that the expression levels of adipose differentiation-related genes PPARγ and CEBP/α were increased and the Oil Red O staining assay showed more lipid droplets. Our study revealed the expression profile of circRNAs in the adipose tissue of old rats. We found a novel age-related circular RNA-circ-ATXN2-that inhibits proliferation and promotes cell death and adipogenesis in rat adipose tissue-derived stromal cells.

4.
FEBS Open Bio ; 11(9): 2453-2467, 2021 09.
Article in English | MEDLINE | ID: mdl-34233080

ABSTRACT

Flow cytometric sorting is a vital tool in biological research and clinical diagnostics. Theoretically, a high-speed jet-in-air sorter is a fluorescent-activated cell sorting sorter that ideally processes cells with high purity, yield, and viability. However, high-speed jet-in-air sorting is a complex process due to its inherent requirements for high fluidic stability and electronic and timing precision. Here, we report that an additional manual correction of drop delay leads to improved cell yield. Adding 2% FBS to the loading buffer had no significant effect on the fate of sorted cells in 4 h. However, the addition of a suitable concentration of FBS/BSA in the collecting buffer resulted in a notable increase in cell count and proliferation and a significant decrease in cell apoptosis for cell lines and primary cells. Moreover, the level of gene expression remained steady in the 5% FBS collecting buffer. In summary, here we demonstrate techniques that can be easily followed to refine sorted yields of healthy cells.


Subject(s)
Flow Cytometry/methods , Apoptosis , Biomarkers , Cell Count , Cell Line , Cell Separation/methods , Cell Separation/standards , Cell Survival , Flow Cytometry/standards , Genomic Instability , Humans , Immunophenotyping
5.
Sci Adv ; 7(26)2021 Jun.
Article in English | MEDLINE | ID: mdl-34162544

ABSTRACT

The Qinghai-Tibet Plateau endemic Chinese mountain cat has a controversial taxonomic status, whether it is a true species or a wildcat (Felis silvestris) subspecies and whether it has contributed to cat (F. s. catus) domestication in East Asia. Here, we sampled F. silvestris lineages across China and sequenced 51 nuclear genomes, 55 mitogenomes, and multilocus regions from 270 modern or museum specimens. Genome-wide analyses classified the Chinese mountain cat as a wildcat conspecific F. s. bieti, which was not involved in cat domestication of China, thus supporting a single domestication origin arising from the African wildcat (F. s. lybica). A complex hybridization scenario including ancient introgression from the Asiatic wildcat (F. s. ornata) to F. s. bieti, and contemporary gene flow between F. s. bieti and sympatric domestic cats that are likely recent Plateau arrivals, raises the prospect of disrupted wildcat genetic integrity, an issue with profound conservation implications.

SELECTION OF CITATIONS
SEARCH DETAIL
...