Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7: 44521, 2017 03 17.
Article in English | MEDLINE | ID: mdl-28303965

ABSTRACT

Mounting evidence suggests that exposure to radiofrequency electromagnetic radiation (RF-EMR) can influence learning and memory in rodents. In this study, we examined the effects of single exposure to 1.8 GHz RF-EMR for 30 min on subsequent recognition memory in mice, using the novel object recognition task (NORT). RF-EMR exposure at an intensity of >2.2 W/kg specific absorption rate (SAR) power density induced a significant density-dependent increase in NORT index with no corresponding changes in spontaneous locomotor activity. RF-EMR exposure increased dendritic-spine density and length in hippocampal and prefrontal cortical neurons, as shown by Golgi staining. Whole-cell recordings in acute hippocampal and medial prefrontal cortical slices showed that RF-EMR exposure significantly altered the resting membrane potential and action potential frequency, and reduced the action potential half-width, threshold, and onset delay in pyramidal neurons. These results demonstrate that exposure to 1.8 GHz RF-EMR for 30 min can significantly increase recognition memory in mice, and can change dendritic-spine morphology and neuronal excitability in the hippocampus and prefrontal cortex. The SAR in this study (3.3 W/kg) was outside the range encountered in normal daily life, and its relevance as a potential therapeutic approach for disorders associated with recognition memory deficits remains to be clarified.


Subject(s)
Electromagnetic Fields/adverse effects , Electromagnetic Radiation , Pattern Recognition, Visual/radiation effects , Pyramidal Cells/radiation effects , Action Potentials/radiation effects , Animals , Dendritic Spines/pathology , Dendritic Spines/radiation effects , Hippocampus/physiopathology , Hippocampus/radiation effects , Memory , Memory Disorders/etiology , Memory Disorders/physiopathology , Mice , Pyramidal Cells/pathology , Radio Waves/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...