Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Cell Death Dis ; 15(2): 168, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38395990

ABSTRACT

Glioblastoma (GBM) cells require large amounts of iron for tumor growth and progression, which makes these cells vulnerable to destruction via ferroptosis induction. Mitochondria are critical for iron metabolism and ferroptosis. Sirtuin-3 (SIRT3) is a deacetylase found in mitochondria that regulates mitochondrial quality and function. This study aimed to characterize SIRT3 expression and activity in GBM and investigate the potential therapeutic effects of targeting SIRT3 while also inducing ferroptosis in these cells. We first found that SIRT3 expression was higher in GBM tissues than in normal brain tissues and that SIRT3 protein expression was upregulated during RAS-selective lethal 3 (RSL3)-induced GBM cell ferroptosis. We then observed that inhibition of SIRT3 expression and activity in GBM cells sensitized GBM cells to RSL3-induced ferroptosis both in vitro and in vivo. Mechanistically, SIRT3 inhibition led to ferrous iron and ROS accumulation in the mitochondria, which triggered mitophagy. RNA-Sequencing analysis revealed that upon SIRT3 knockdown in GBM cells, the mitophagy pathway was upregulated and SLC7A11, a critical antagonist of ferroptosis via cellular import of cystine for glutathione (GSH) synthesis, was downregulated. Forced expression of SLC7A11 in GBM cells with SIRT3 knockdown restored cellular cystine uptake and consequently the cellular GSH level, thereby partially rescuing cell viability upon RSL3 treatment. Furthermore, in GBM cells, SIRT3 regulated SLC7A11 transcription through ATF4. Overall, our study results elucidated novel mechanisms underlying the ability of SIRT3 to protect GBM from ferroptosis and provided insight into a potential combinatorial approach of targeting SIRT3 and inducing ferroptosis for GBM treatment.


Subject(s)
Ferroptosis , Glioblastoma , Sirtuin 3 , Humans , Amino Acid Transport System y+/genetics , Cystine , Ferroptosis/genetics , Glioblastoma/genetics , Glutathione , Indans , Iron , Mitophagy , Sirtuin 3/genetics
2.
Cancers (Basel) ; 14(21)2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36358651

ABSTRACT

Antioxidant transcription factor NRF2 plays a pivotal role in cell ferroptosis. KLK lung adenocarcinoma (LUAD) is a specific molecular subtype of Kras-mutant LUAD. The activation of mutant Kras in combination with the inactivation of Lkb1 and Keap1 abnormally increases NRF2 expression, while high NRF2 confers KLK LUAD cell resistance to ferroptosis. This study assessed the inhibition of NRF2-GSH axis to sensitize a small molecule RSL3 to induce KLK LUAD cell ferroptosis and then explored the underlying molecular mechanisms. The data showed that the NRF2-GSH inhibition sensitized RSL3 induction of KLK LUAD cell ferroptosis in vitro, while RSL3 treatment reduced level of NRF2 protein in KLK LUAD during ferroptosis. Moreover, RSL3 treatment inhibited activity of the NRF2-GSH signaling during in KLK LUAD cell ferroptosis in vitro and in vivo. Mechanistically, the RSL3 reduction of NRF2 expression was through the promotion of NRF2 ubiquitination in KLK LUAD cells. In addition, RSL3 was able to directly bind to USP11, a recently identified de-ubiquitinase of NRF2, and inactivate USP11 protein to induce NRF2 protein ubiquitination and degradation in KLK LUAD cells. These data revealed a novel mechanism of RSL3 induction in KLK LUAD cell ferroptosis by suppression of the USP11-NRF2-GSH signaling. Future study will confirm RSL3 as a novel therapeutic approach in control of KLK lung adenocarcinoma.

3.
Cell Death Differ ; 29(2): 337-350, 2022 02.
Article in English | MEDLINE | ID: mdl-34465891

ABSTRACT

Neurogenesis plays a critical role in brain physiology and behavioral performance, and defective neurogenesis leads to neurological and psychiatric disorders. Here, we show that PLCß4 expression is markedly reduced in SENP2-deficient cells and mice, resulting in decreased IP3 formation and altered intracellular calcium homeostasis. PLCß4 stability is regulated by the SUMO-dependent ubiquitin-mediated proteolytic pathway, which is catalyzed by PIAS2α and RNF4. SUMOylated PLCß4 is transported to the nucleus through Nup205- and RanBP2-dependent pathways and regulates nuclear signaling. Furthermore, dysregulated calcium homeostasis induced defects in neurogenesis and neuronal viability in SENP2-deficient mice. Finally, SENP2 and PLCß4 are stimulated by starvation and oxidative stress, which maintain calcium homeostasis regulated neurogenesis. Our findings provide mechanistic insight into the critical roles of SENP2 in the regulation of PLCß4 SUMOylation, and the involvement of SENP2-PLCß4 axis in calcium homeostasis regulated neurogenesis under stress.


Subject(s)
Calcium , Cysteine Endopeptidases , Neurogenesis , Phospholipase C beta , Animals , Calcium/metabolism , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Homeostasis , Mice , Nuclear Proteins/metabolism , Phospholipase C beta/metabolism , Sumoylation , Transcription Factors/metabolism
4.
J Mol Med (Berl) ; 99(12): 1797-1813, 2021 12.
Article in English | MEDLINE | ID: mdl-34628513

ABSTRACT

Spinal muscular atrophy (SMA), a degenerative motor neuron disease and a leading cause of infant mortality, is caused by loss of functional survival motor neuron (SMN) protein due to SMN1 gene mutation. Here, using mouse and cell models for behavioral and histological studies, we found that SENP2 (SUMO/sentrin-specific protease 2)-deficient mice developed a notable SMA-like pathology phenotype with significantly decreased muscle fibers and motor neurons. At the molecular level, SENP2 deficiency in mice did not affect transcription but decreased SMN protein levels by promoting the SUMOylation of SMN. SMN was modified by SUMO2 with the E3 PIAS2α and deconjugated by SENP2. SUMOylation of SMN accelerated its degradation by the ubiquitin-proteasome degradation pathway with the ubiquitin E1 UBA1 (ubiquitin-like modifier activating enzyme 1) and E3 ITCH. SUMOylation of SMN increased its acetylation to inhibit the formation of Cajal bodies (CBs). These results showed that SENP2 deficiency induced hyper-SUMOylation of the SMN protein, which further affected the stability and functions of the SMN protein, eventually leading to the SMA-like phenotype. Thus, we uncovered the important roles for hyper-SUMOylation of SMN induced by SENP2 deficiency in motor neurons and provided a novel targeted therapeutic strategy for SMA. KEY MESSAGES: SENP2 deficiency enhanced the hyper-SUMOylation of SMN and promoted the degradation of SMN by the ubiquitin-proteasome pathway. SUMOylation increased the acetylation of SMN to inhibit CB formation. SENP2 deficiency caused hyper-SUMOylation of SMN protein, which further affected the stability and functions of SMN protein and eventually led to the occurrence of SMA-like pathology.


Subject(s)
Cysteine Endopeptidases/genetics , Muscular Atrophy, Spinal , Survival of Motor Neuron 1 Protein/metabolism , Animals , Brain/metabolism , Fibroblasts/metabolism , HEK293 Cells , Humans , Mice, Knockout , Motor Activity , Motor Neurons/metabolism , Muscle Fibers, Skeletal/pathology , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/metabolism , Muscular Atrophy, Spinal/pathology , Muscular Atrophy, Spinal/physiopathology , Reflex, Righting , Spinal Cord/metabolism , Sumoylation , Survival of Motor Neuron 1 Protein/genetics , Ubiquitin-Activating Enzymes/metabolism
5.
J Biol Chem ; 297(4): 101183, 2021 10.
Article in English | MEDLINE | ID: mdl-34509475

ABSTRACT

Sentrin/small ubiquitin-like modifier (SUMO)-specific protease 2 (SENP2)-deficient mice develop spontaneous seizures in early life because of a marked reduction in M currents, which regulate neuronal membrane excitability. We have previously shown that hyper-SUMOylation of the Kv7.2 and Kv7.3 channels is critically involved in the regulation of the M currents conducted by these potassium voltage-gated channels. Here, we show that hyper-SUMOylation of the Kv7.2 and Kv7.3 proteins reduced binding to the lipid secondary messenger PIP2. CaM1 has been shown to be tethered to the Kv7 subunits via hydrophobic motifs in its C termini and implicated in the channel assembly. Mutation of the SUMOylation sites on Kv7.2 and Kv7.3 specifically resulted in decreased binding to CaM1 and enhanced CaM1-mediated assembly of Kv7.2 and Kv7.3, whereas hyper-SUMOylation of Kv7.2 and Kv7.3 inhibited channel assembly. SENP2-deficient mice exhibited increased acetylcholine levels in the brain and the heart tissue because of increases in the vagal tone induced by recurrent seizures. The SENP2-deficient mice develop seizures followed by a period of sinus pauses or atrioventricular conduction blocks. Chronic administration of the parasympathetic blocker atropine or unilateral vagotomy significantly prolonged the life of the SENP2-deficient mice. Furthermore, we showed that retigabine, an M-current opener, reduced the transcription of SUMO-activating enzyme SAE1 and inhibited SUMOylation of the Kv7.2 and Kv7.3 channels, and also prolonged the life of SENP2-deficient mice. Taken together, the previously demonstrated roles of PIP2, CaM1, and retigabine on the regulation of Kv7.2 and Kv7.3 channel function can be explained by their roles in regulating SUMOylation of this critical potassium channel.


Subject(s)
Cysteine Endopeptidases/metabolism , KCNQ2 Potassium Channel/metabolism , KCNQ3 Potassium Channel/metabolism , Second Messenger Systems , Sumoylation , Amino Acid Motifs , Animals , Brain/metabolism , Cysteine Endopeptidases/genetics , KCNQ2 Potassium Channel/genetics , KCNQ3 Potassium Channel/genetics , Mice , Mice, Mutant Strains , Myocardium/metabolism , Seizures/genetics , Seizures/metabolism , Ubiquitin-Activating Enzymes/genetics , Ubiquitin-Activating Enzymes/metabolism
6.
Front Oncol ; 11: 659661, 2021.
Article in English | MEDLINE | ID: mdl-33968766

ABSTRACT

Breast cancer has the highest incidence among cancers and is the most frequent cause of death in women worldwide. The detailed mechanism of the pathogenesis of breast cancer has not been fully elucidated, and there remains a lack of effective treatment methods for the disease. SUMOylation covalently conjugates a large amount of cellular proteins, and affects their cellular localization and biological activity to participate in numerous cellular processes. SUMOylation is an important process and imbalance of SUMOylation results in the progression of human diseases. Increasing evidence shows that numerous SUMOylated proteins are involved in the occurrence and development of breast cancer. This review summarizes a series of studies on protein SUMOylation in breast cancer in recent years. The study of SUMOylated proteins provides a comprehensive understanding of the pathophysiology of breast cancer and provides evolving therapeutic strategies for the treatment of breast cancer.

7.
Front Mol Biosci ; 8: 652284, 2021.
Article in English | MEDLINE | ID: mdl-33842551

ABSTRACT

Leukemia is a malignant disease of hematopoietic tissue characterized by the differentiation arrest and malignant proliferation of immature hematopoietic precursor cells in bone marrow. ERG (ETS-related gene) is an important member of the E26 transformation-specific (ETS) transcription factor family that plays a crucial role in physiological and pathological processes. However, the role of ERG and its modification in leukemia remains underexplored. In the present study, we stably knocked down or overexpressed ERG in leukemia cells and observed that ERG significantly promotes the proliferation and inhibits the differentiation of AML (acute myeloid leukemia) cells. Further experiments showed that ERG was primarily modified by SUMO2, which was deconjugated by SENP2. PML promotes the SUMOylation of ERG, enhancing its stability. Arsenic trioxide decreased the expression level of ERG, further promoting cell differentiation. Furthermore, the mutation of SUMO sites in ERG inhibited its ability to promote the proliferation and inhibit the differentiation of leukemia cells. Our results demonstrated the crucial role of ERG SUMOylation in the development of AML, providing powerful targeted therapeutic strategies for the clinical treatment of AML.

8.
FASEB J ; 35(4): e21510, 2021 04.
Article in English | MEDLINE | ID: mdl-33710677

ABSTRACT

Neurological diseases are relatively complex diseases of a large system; however, the detailed mechanism of their pathogenesis has not been completely elucidated, and effective treatment methods are still lacking for some of the diseases. The SUMO (small ubiquitin-like modifier) modification is a dynamic and reversible process that is catalyzed by SUMO-specific E1, E2, and E3 ligases and reversed by a family of SENPs (SUMO/Sentrin-specific proteases). SUMOylation covalently conjugates numerous cellular proteins, and affects their cellular localization and biological activity in numerous cellular processes. A wide range of neuronal proteins have been identified as SUMO substrates, and the disruption of SUMOylation results in defects in synaptic plasticity, neuronal excitability, and neuronal stress responses. SUMOylation disorders cause many neurodegenerative diseases, such as Parkinson's disease, Alzheimer's disease, and Huntington's disease. By modulating the ion channel subunit, SUMOylation imbalance is responsible for the development of various channelopathies. The regulation of protein SUMOylation in neurons may provide a new strategy for the development of targeted therapeutic drugs for neurodegenerative diseases and channelopathies.


Subject(s)
Nervous System Diseases/metabolism , Protein Processing, Post-Translational/physiology , Small Ubiquitin-Related Modifier Proteins/metabolism , Sumoylation/physiology , Animals , Endopeptidases/metabolism , Humans , SUMO-1 Protein/metabolism
9.
J Cell Physiol ; 236(5): 3466-3480, 2021 05.
Article in English | MEDLINE | ID: mdl-33151565

ABSTRACT

Leukemia is a severe malignancy of the hematopoietic system, which is characterized by uncontrolled proliferation and dedifferentiation of immature hematopoietic precursor cells in the lymphatic system and bone marrow. Leukemia is caused by alterations of the genetic and epigenetic regulation of processes underlying hematologic malignancies, including SUMO modification (SUMOylation). Small ubiquitin-like modifier (SUMO) proteins covalently or noncovalently conjugate and modify a large number of target proteins via lysine residues. SUMOylation is a small ubiquitin-like modification that is catalyzed by the SUMO-specific activating enzyme E1, the binding enzyme E2, and the ligating enzyme E3. SUMO is covalently linked to substrate proteins to regulate the cellular localization of target proteins and the interaction of target proteins with other biological macromolecules. SUMOylation has emerged as a critical regulatory mechanism for subcellular localization, protein stability, protein-protein interactions, and biological function and thus regulates normal life activities. If the SUMOylation process of proteins is affected, it will cause a cellular reaction and ultimately lead to various diseases, including leukemia. There is growing evidence showing that a large number of proteins are SUMOylated and that SUMOylated proteins play an important role in the occurrence and development of various types of leukemia. Targeting the SUMOylation of proteins alone or in combination with current treatments might provide powerful targeted therapeutic strategies for the clinical treatment of leukemia.


Subject(s)
Leukemia/metabolism , Promyelocytic Leukemia Protein/metabolism , Small Ubiquitin-Related Modifier Proteins/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Humans , Leukemia/genetics , Lysine/metabolism , Promyelocytic Leukemia Protein/genetics , Protein Processing, Post-Translational/physiology , Small Ubiquitin-Related Modifier Proteins/genetics , Ubiquitin-Conjugating Enzymes/genetics
10.
Oxid Med Cell Longev ; 2020: 6240125, 2020.
Article in English | MEDLINE | ID: mdl-33299528

ABSTRACT

Nuclear factor erythroid 2-related factor 2 (NRF2) is a crucial transcription factor for cell adaptation and defense against oxidative stress. NRF2 activation confers Kras/Lkb1/Keap1 (KLK) mutant tumor cells with greater resistance to oxidative insults. We previously reported that SUMOylation at lysine residue 110 is important for the ability of NRF2 to promote reactive oxygen species (ROS) clearance in hepatocellular carcinoma. In this study, we investigated whether SUMOylation is necessary for the ability of NRF2 to inhibit KLK lung adenocarcinoma (LUAD) cell migration and invasion. Our experiments showed that mild oxidative stress reduced NRF2 SUMOylation, which promoted KLK LUAD cell migration and invasion. Mechanistically, NRF2 SUMOylation increased the antioxidant ability of NRF2 and reduced cellular ROS levels, mainly by transcriptionally activating Cat in KLK LUAD cells. With reduced NRF2 SUMOylation, increased ROS acted as signaling molecules to activate the JNK/c-Jun axis, which enhanced cell mobility and cell adhesion, to promote LUAD cell migration and invasion. Taken together, the results of this study reveal a novel signaling process in which reduced NRF2 SUMOylation permits increased KLK LUAD cell migration and invasion under mild oxidative stress.


Subject(s)
Cell Movement/physiology , Kelch-Like ECH-Associated Protein 1/metabolism , Lung Neoplasms/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress/physiology , Proto-Oncogene Proteins p21(ras)/metabolism , Sumoylation/genetics , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , Antioxidants/metabolism , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Cell Movement/genetics , Humans , Kelch-Like ECH-Associated Protein 1/genetics , Liver Neoplasms/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , NF-E2-Related Factor 2/genetics , Oxidative Stress/drug effects , Proto-Oncogene Proteins p21(ras)/genetics , Reactive Oxygen Species/metabolism , Sumoylation/drug effects
11.
Front Physiol ; 11: 558220, 2020.
Article in English | MEDLINE | ID: mdl-33192553

ABSTRACT

Post-translational modification by SUMO (small ubiquitin-like modifier) proteins has been shown to regulate a variety of functions of proteins, including protein stability, chromatin organization, transcription, DNA repair, subcellular localization, protein-protein interactions, and protein homeostasis. SENP (sentrin/SUMO-specific protease) regulates precursor processing and deconjugation of SUMO to control cellular mechanisms. SENP3, which is one of the SENP family members, deconjugates target proteins to alter protein modification. The effect of modification via SUMO and SENP3 is crucial to maintain the balance of SUMOylation and guarantee normal protein function and cellular activities. SENP3 acts as an oxidative stress-responsive molecule under physiological conditions. Under pathological conditions, if the SUMOylation process of proteins is affected by variations in SENP3 levels, it will cause a cellular reaction and ultimately lead to abnormal cellular activities and the occurrence and development of human diseases, including cardiovascular diseases, neurological diseases, and various cancers. In this review, we summarized the most recent advances concerning the critical roles of SENP3 in normal physiological and pathological conditions as well as the potential clinical implications in various diseases. Targeting SENP3 alone or in combination with current therapies might provide powerful targeted therapeutic strategies for the treatment of these diseases.

SELECTION OF CITATIONS
SEARCH DETAIL
...